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Sr. 

No. 

Title Sign 

1 Prepare the Analysis services for Adventure Works 
Cycles or (any other database) Build the data mining 
model structure and built the decision tree with proper 
decision nodes. And infer atleast five different types of 
reports  

 

2 Prepare the Analysis services for Adventure Works 
Cycles or (any other database) .Build the data mining 
model structure. Implement the clustering Algorithm.  

 

3 Prepare the Analysis services for Adventure Works 
Cycles or (any other database) .Build the data mining 
model structure and Implement Naïve Bayes Algorithm. 

 

4 Prepare the Analysis services for Adventure Works 
Cycles or (any other database) .Build the basic Time 
series model structure and create the predictions  

 

5 Prepare the Analysis services for Adventure Works 
Cycles or (any other database) .Build the basic data 
mining model and show the implementation of 
Association algorithm  

 

6 Using R-Tool, show the analysis for social networking 
sites. 

 

7 Consider the suitable data for text mining and Implement 
the Text Mining technique using R-Tool 

 

8 Consider the suitable data for Apriori Algorithm and 
Implement the Apriori Algorithm using R-Tool. 

 

 
 

 

 

 

 

 

 

 

 



Practical 1: 

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other 

database) Build the data mining model structure and built the decision tree with proper 

decision nodes. And infer atleast five different types of reports 

Theory:  

Decision tree induction is the learning of decision trees from class- labelled training 

tuples. A decision tree is a flowchart- like tree structure, where each internal node 

(non leaf node) denotes a test on an attribute ,each branch represents an outcome of 

the test ,and each leaf node (or terminal node) holds a class label. The topmost node in 

a tree is the root node. Internal nodes are denoted by rectangles, and leaf nodes are 

denoted by ovals. 

 

 

A typical decision tree is shown in Figure.  It represents the concept buys computer, 

that is, it predicts whether a customer at AllElectronics is likely to purchase a 

computer. 

The benefits of having a decision tree are as follows − 

 It does not require any domain knowledge. 

 It is easy to comprehend. 

 The learning and classification steps of a decision tree are simple and fast. 

Tree Pruning 

Tree pruning is performed in order to remove anomalies in the training data due to 

noise or outliers. The pruned trees are smaller and less complex. 

 



Tree Pruning Approaches 

There are two approaches to prune a tree − 

 Pre-pruning − The tree is pruned by halting its construction early. 

 Post-pruning - This approach removes a sub-tree from a fully grown tree. 

Cost Complexity 

The cost complexity is measured by the following two parameters − 

 Number of leaves in the tree, and 

 Error rate of the tree. 

 

Practical 

Step 1: Open Weka 

 



Step 2: Click on Explorer 

 

Step 3: Click on Open File Option 

 

Step 4: Go to C://Program Files/Weka-3-8/data. Select weather.nominal.arff 

database 



 

Step 5: Open the database  

 

Step 6: Select all the attributes  



 

Step 7: Go to Classify tab 

 

Step 8: Choose algorithm to apply. For that Go to->Choose tab->Trees-> J48 



  

Step 9: Click on Start Button 

 

Step 10: Right click on the created structure and select Visualize Tree option 



 

Step 11: View the Decision tree 

 

 



Practical 2:  

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other 

database) .Build the data mining model structure and Implement the clustering 

Algorithm. 

Theory: Clustering can be considered the most important unsupervised 

learning problem. So, as every other problem of this kind, it deals with finding 

a structure in a collection of unlabelled data. 

A loose definition of clustering could be “the process of organizing objects into 

groups whose members are similar in some way”. 

A cluster is therefore a collection of objects which are “similar” between them and are 

“dissimilar” to the objects belonging to other clusters. 

We can show this with a simple graphical example: 

 

In this case we easily identify the 4 clusters into which the data can be divided; the 

similarity criterion is distance: two or more objects belong to the same cluster if they 

are “close” according to a given distance (in this case geometrical distance). This is 

called distance-based clustering. 

Another kind of clustering is conceptual clustering: two or more objects belong to the 

same cluster if this one defines a concept common to all that objects. In other words, 

objects are grouped according to their fit to descriptive concepts, not according to 

simple similarity measures. 

The goal of clustering is to determine the intrinsic grouping in a set of unlabelled data. 

But how to decide what constitutes a good clustering? It can be shown that there is no 

absolute “best” criterion which would be independent of the final aim of the 



clustering. Consequently, it is the user which must supply this criterion, in such a way 

that the result of the clustering will suit their needs. 

Clustering algorithms may be classified as listed below: 

 Exclusive Clustering 

 Overlapping Clustering 

 Hierarchical Clustering 

 Probabilistic Clustering 

K-means is an exclusive clustering algorithm. K-means is one of the simplest 

unsupervised learning algorithms that solve the well-known clustering problem. 

The algorithm is composed of the following steps: 

1. Place K points into the space represented by the objects that are 

being clustered. These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the 

K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This 

produces a separation of the objects into groups from which the 

metric to be minimized can be calculated. 

 

Practical 

Step 1: Open Weka 

 



Step 2: Click on Explorer 

 

Step 3: Click on Open File Option 

 

Step 4: Go to C://Program Files/Weka-3-8/data. Select diabetes.arff database 



 

Step 5: Go to Cluster tab and Choose SimpleKMeans algorithm 

 

Step 6: Right Click on created project and select Visualize cluster assignments  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Practical 3: 

Aim: Prepare the Analysis services for Adventure Works Cycles  or (any other 

database) . Build the data mining model structure and Implement Naïve Bayes 

Algorithm. 

Theory: 

Bayesian classification is based on Bayes‟ theorem. Simple Bayesian classifier known 

as the naive Bayesian classifier. Naïve Bayesian classifiers assume that the effect of an 

attribute value on a given class is independent of the values of the other attributes. 

This assumption is called class conditional independence. It is made to simplify the 

computations involved and, in this sense, is considered “naïve.” 

What is Naive Bayes algorithm? 

It is a classification technique based on Bayes‟ Theorem with an assumption of 

independence among predictors. In simple terms, a Naive Bayes classifier assumes 

that the presence of a particular feature in a class is unrelated to the presence of any 

other feature. For example, a fruit may be considered to be an apple if it is red, round, 

and about 3 inches in diameter. Even if these features depend on each other or upon 

the existence of the other features, all of these properties independently contribute to 

the probability that this fruit is an apple and that is why it is known as „Naive‟. 

Naive Bayes model is easy to build and particularly useful for very large data sets. 

Along with simplicity, Naive Bayes is known to outperform even highly sophisticated 

classification methods. 

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), 

P(x) and P(x|c). Look at the equation below: 

 

Above, 

 P(c|x) is the posterior probability of class (c, target) 

given predictor (x, attributes). 

 P(c) is the prior probability of class. 

https://www.analyticsvidhya.com/wp-content/uploads/2015/09/Bayes_rule-300x172.png


 P(x|c) is the likelihood which is the probability of predictor given class. 

 P(x) is the prior probability of predictor. 

How Naive Bayes algorithm works? 

Let‟s understand it using an example. Below I have a training data set of weather and 

corresponding target variable „Play‟ (suggesting possibilities of playing). Now, we 

need to classify whether players will play or not based on weather condition. Let‟s 

follow the below steps to perform it. 

Step 1: Convert the data set into a frequency table 

Step 2: Create Likelihood table by finding the probabilities like Overcast probability = 

0.29 and probability of playing is 0.64. 

 

Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for 

each class. The class with the highest posterior probability is the outcome of 

prediction. 

Problem: Players will play if weather is sunny. Is this statement is correct? 

We can solve it using above discussed method of posterior probability. 

P(Yes | Sunny) = P( Sunny | Yes) * P(Yes) / P (Sunny) 

Here we have P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P( Yes)= 9/14 = 

0.64 

Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability. 

Naive Bayes uses a similar method to predict the probability of different class based 

on various attributes. This algorithm is mostly used in text classification and with 

problems having multiple classes. 

https://www.analyticsvidhya.com/wp-content/uploads/2015/08/Bayes_41.png


 What are the Pros and Cons of Naive Bayes? 

Pros: 

 It is easy and fast to predict class of test data set. It also perform well in multi 

class prediction 

 When assumption of independence holds, a Naive Bayes classifier performs 

better compare to other models like logistic regression and you need less 

training data. 

 It perform well in case of categorical input variables compared to numerical 

variable(s). For numerical variable, normal distribution is assumed (bell curve, 

which is a strong assumption). 

Cons: 

 If categorical variable has a category (in test data set), which was not observed 

in training data set, then model will assign a 0 (zero) probability and will be 

unable to make a prediction. This is often known as “Zero Frequency”. To 

solve this, we can use the smoothing technique. One of the simplest smoothing 

techniques is called Laplace estimation. 

 On the other side naive Bayes is also known as a bad estimator, so the 

probability outputs from predict_proba are not to be taken too seriously. 

 Another limitation of Naive Bayes is the assumption of independent predictors. 

In real life, it is almost impossible that we get a set of predictors which are 

completely independent. 

  

4 Applications of Naive Bayes Algorithms 

 Real time Prediction: Naive Bayes is an eager learning classifier and it is 

sure fast. Thus, it could be used for making predictions in real time. 

 Multi class Prediction: This algorithm is also well known for multi class 

prediction feature. Here we can predict the probability of multiple classes of 

target variable. 

 Text classification/ Spam Filtering/ Sentiment Analysis: Naive Bayes 

classifiers mostly used in text classification (due to better result in multi class 

problems and independence rule) have higher success rate as compared to other 

algorithms. As a result, it is widely used in Spam filtering (identify spam e-

mail) and Sentiment Analysis (in social media analysis, to identify positive and 

negative customer sentiments) 

 Recommendation System: Naive Bayes Classifier and Collaborative 

Filtering together builds a Recommendation System that uses machine learning 

and data mining techniques to filter unseen information and predict whether a 

user would like a given resource or not 

https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering


Step 1: Open Weka 

 

Step 2: Click on Explorer 

 

Step 3: Click on Open File Option 



 

Step 4: Go to C://Program Files/Weka-3-8/data. Select soyabean.arff database 

 

Step 5: Go to Classify tab and Select Naïve Bayes algorithm under Bayes tab 



 

Step 6: Right Click on created structure and select Visualize Classifier Errors 

 

Step 7: Explore Visualize Threshold Curve 



 

Step 8: Explore Cost Benefit Analysis 

 

Step 9: Explore Cost Curve 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Practical 4: 

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other 

database).Build the basic Time series model structure and create the predictions 

Theory: The Time Series mining function enables forecasting of time series values. 

Similar to common regression methods, time series algorithms predict a numerical 

value. In contrast to common regression methods, time series predictions are focused 

on future values of an ordered series. These predictions are commonly called 

forecasts. 

The time series algorithms are univariate algorithms. This means that the independent 

variable is a time column or an order column. The forecasts are based on past values. 

They are not based on other independent columns. 

Time series algorithms are different from common regression algorithms because they 

do not only predict future values but also incorporate seasonal cycles into the forecast. 

Time series algorithms 

The Time Series mining function provides algorithms that are based on different 

underlying model assumptions with several parameters. The learning algorithms try to 

find the best model and the best parameter values for the given data. 

If you do not specify a seasonal cycle, it is automatically determined. Also, missing 

values and non-equidistant time series are automatically interpolated. 

The Time Series mining function provides the following algorithms to predict future 

trends: 

 Autoregressive Integrated Moving Average (ARIMA) 

 Exponential Smoothing 

 Seasonal Trend Decomposition 

Which of the algorithms creates the best forecast of your data depends on different 

model assumptions. You can calculate all forecasts at the same time. The algorithms 

calculate a detailed forecast including seasonal behaviour of the original time series. 

With the Time Series Visualizer, you can evaluate and compare the resulting curves. 

Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA algorithm also incorporates seasonal components. Therefore this 

algorithm is also referred to as Seasonal ARIMA (SARIMA). 

The autoregressive part of the algorithm uses weighted previous values while the 

moving average part weighs the previously assumed errors of the time series. 



The ARIMA algorithm assumes the error to be independent and identically distributed 

from a normal distribution with zero mean. The basic ARMA model works for 

stationary time series only. Stationary time series contain equal mean and equal 

variance for the whole time series. Therefore the integrated part creates stationary 

series by differentiation. 

Exponential Smoothing 

Exponential Smoothing can consist of the following components: 

 Basic level at a certain point in time. 

 Trend. 

The trend can have additive or multiplicative characteristics. Also, it can be 

damped or non-damped. 

 The seasonal component. 

Dependant on the data, trend and the seasonal component are optional. There are 

ARIMA models that correspond to Exponential Smoothing models and vice versa. 

Seasonal Trend Decomposition 

Seasonal Trend Decomposition fits different seasonal trend functions to the given data 

and selects the best seasonal trend function according to an error measure. The 

following trends are used during the training run: 

 Linear trend 

 Quadratic trend 

 Cubic trend 

 Logarithmic trend 

 Exponential trend 

 Hyperbolic trend 

The seasonality is incorporated in an additive or multiplicative way. 

Practical 

Step 1: Open Weka 

 

 

 

 

 

 



Step 2: Click on Explorer 

 

Step 3: For this practical we need to install Forecast, as you can see last tab in 

Visualize tab and we need to install one more tab Forecast. 

Step 4: Open Weka-> Click on Tools-> Select Package Manager 

 

Step 5: Following is the Package Manager through which we need to install  



 

Step 6: Scroll Down and Select timeSeriesForecasting 

 

Step 7: Click on Install  

 



Step 8: Now again go to Explorer and you can find new tab is been added  

 

Step 9: Create the following database. Open Notepad and type the following 

@relation AnkaraPopulation 

@attribute year numeric 

@attribute population numeric 

@data 

2007, 70586256 

2008,71517100 

2009,72561312 

2010,73722988 

Save the file with .arff extension 

Step 10: Open the created database 



 

Step 11: Go to Forecast tab and under basic configuration do the following 

changes: 

 

Step 12: Go to Advanced Configuration tab and select LinearRegression 

Algorithm under functions option. 

 



Step 13: Click on start button 

 

Step 14: Go to Train future pred option. 

 

 

 

 

 

 

 

 

 

 

 



Practical 5: 

Aim: Prepare the Analysis services for Adventure Works Cycles  or (any other 

database) .Build the basic data mining model and show the implementation of 

Association algorithm. And also apply the DMX queries. 

Theory: 

Rule support and confidence are two measures of rule interestingness. They 

respectively reflect the usefulness and certainty of discovered rules. Asupport of 2% 

for Association Rule means that 2% of all the transactions under analysis show that 

computer and antivirus software are purchased together. A confidence of 60% means 

that 60% of the customers who purchased a computer also bought the software. 

Typically, association rules are considered interesting if they satisfy both a minimum 

support threshold and a minimum confidence threshold. 

A transaction T is said to contain A if and only if A ⊆ T. An association rule is an 

implication of the form A ⇒B, where A ⊂ I ,B ⊂ I ,and A∩B = φ. The rule A ⇒B 

holds in the transaction set D with support s, where s is the percentage of transactions 

in D that contain A∪B (i.e., the union of sets A and B, or say, both A and B). 

This is taken to be the probability, P(A∪B).1 The rule A ⇒ B has confidence c in the 

transaction set D, where c is the percentage of transactions in D containing A that also 

contain B. This is taken to be the conditional probability, P(B|A). That is, 

 

 

In general, association rule mining can be viewed as a two-step process: 

1. Find all frequent itemsets:  

By definition, each of these itemsets will occur at least as frequently as a 

predetermined minimum support count, min sup.  

2. Generate strong association rules from the frequent itemsets: 

 By definition, these rules must satisfy minimum support and minimum 

confidence. 

 

 



Step 1: Open Weka 

 

Step 2: Click on Explorer 

 

Step 3: Click on Open File Option 



 

Step 4: Go to C://Program Files/Weka-3-8/data. Select weather.nomial.arff 

database. Select all the attributes. 

 

Step 5: Go to Associate tab and Choose Apriori Algorithm 



 

Step 6: Right Click on created structure and select View in separate window 

 

 

 

 

 

 



Practical 6: 

Aim: Using R-Tool , show the analysis for social networking sites. 

Theory: 

Social network analysis is based on an assumption of the importance of relationships 

among interacting units.  

The social network perspective encompasses theories, models, and applications that 

are expressed in terms of relational concepts or processes.  

Along with growing interest and increased use of network analysis has come a 

consensus about the central principles underlying the network perspective. In addition 

to the use of relational concepts, we note the following as being important: 

 Actors and their actions are viewed as interdependent rather than independent, 

autonomous units 

 Relational ties (linkages) between actors are channels for transfer or "flow" of 

resources (either material or nonmaterial) 

 Network models focusing on individuals view the network structural 

environment as providing opportunities for or constraints on individual action 

 Network models conceptualize structure (social, economic, political, and so 

forth) as lasting patterns of relations among actors 

The unit of analysis in network analysis is not the individual, but an entity consisting 

of a collection of individuals and the linkages among them.  

Network methods focus on dyads (two actors and their ties), triads (three actors and 

their ties), or larger systems (subgroups of individuals, or entire networks. 

Social network analysis [SNA] is the mapping and measuring of relationships and 

flows between people, groups, organizations, computers or other 

information/knowledge processing entities.  

The nodes in the network are the people and groups while the links show relationships 

or flows between the nodes. SNA provides both a visual and a mathematical analysis 

of complex human systems. 

Procedure 

The data to analyze is Twitter text dataand it can be downloaded as file 

"termDocMatrix.rdata" athttp://www.rdatamining.com/data . 

 

 

http://www.rdatamining.com/data


    1)  Load Data 

> # load termDocMatrix 

> load(“data/termDocMatrix.rdata”) 

> # inspect part of the matrix 

> termDocMatrix[5:10,1:20] 

             Docs 

Terms        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

data         1 1 0 0 2 0 0 0 0  0  1  2  1  1  1  0  1  0  0  0 

examples     0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0 

introduction 0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  1 

mining       0 0 0 0 0 0 0 0 0  0  0  1  1  0  1  0  0  0  0  0 

network      0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  1  0  1  1  1 

package      0 0 0 1 1 0 0 0 0  0  0  1  0  0  0  0  0  0  0  0 

       2)  Transform Data into an Adjacency Matrix 

> # change it to a Boolean matrix 

> termDocMatrix[termDocMatrix>=1] <- 1 

> # transform into a term-term adjacency matrix 

> termMatrix <- termDocMatrix %*% t(termDocMatrix) 

> # inspect terms numbered 5 to 10 

> termMatrix[5:10,5:10] 

             Terms 

Terms        data examples introduction mining network package 

data         53          5            2     34       0       7 

examples      5         17            2      5       2       2 

introduction  2          2           10      2       2       0 



mining       34          5            2     47       1       5 

network       0          2            2      1      17       1 

package       7          2            0      5       1      21 

        3)Build a Graph 

Now we have built a term-term adjacency matrix, where the rows and columns 

represents terms, and every entry is the number of co-occurrences of two terms. Next 

we can build a graph with graph.adjacency() from package igraph. 

> library(igraph) 

> # build a graph from the above matrix 

> g <- graph.adjacency(termMatrix, weighted=T, mode = “undirected”) 

> # remove loops 

> g <- simplify(g) 

> # set labels and degrees of vertices 

> V(g)$label <- V(g)$name 

> V(g)$degree <- degree(g) 

      4) Plot a Graph 

> # set seed to make the layout reproducible 

> set.seed(3952) 

> layout1 <- layout.fruchterman.reingold(g) 

> plot(g, layout=layout1) 



 

A different layout can be generated with the first line of code below. The second line 

produces an interactive plot, which allows us to manually rearrange the layout. Details 

about other layout options can be obtained by running ?igraph::layout in R. 

> plot(g, layout=layout.kamada.kawai) 

> tkplot(g, layout=layout.kamada.kawai) 

 

 

 

 

 

 

 



Practical 7:  

Aim: Consider the suitable data for text mining and Implement the Text Mining 

technique using R-Tool  

Theory: 

 Text mining, which is sometimes referred to “text analytics” is one way to make 

qualitative or “unstructured” data usable by a computer.  

Qualitative data is descriptive data that cannot be measured in numbers and often 

includes qualities of appearance like color, texture, and textual description. 

Quantitative data is numerical, structured data that can be measured. However, there is 

often slippage between qualitative and quantitative categories. For example, a 

photograph might traditionally be considered “qualitative data” but when you break it 

down to the level of pixels, which can be measured. 

Text mining is defined  as the process or practice of examining large collections of 

written resources in order to generate new information, typically using specialized 

computer software. It is a subset of the larger field of data mining.  

Some applications of text-mining include: 

 Enterprise Business Intelligence/Data Mining, Competitive Intelligence 

 E-Discovery, Records Management 

 National Security/Intelligence 

 Scientific discovery, especially Life Sciences  

 Search/Information Access 

 Social media monitoring 

 

 “Text mining involves the application of techniques from areas such as information 

retrieval, natural language processing, information extraction and data mining. These 

various stages of a text-mining process can be combined into a single workflow”. 

 Information retrieval (IR) systems match a user‟s query to documents in a 

collection or database. The first step in the text mining process is to find the body 

of documents that are relevant to the research question(s). 



 Natural language processing (NLP) analyzes the text in structures based on 

human speech. It allows the computer to perform a grammatical analysis of a 

sentence to “read” the text. 

 Information extraction (IE) involves structuring the data that the NLP system 

generates. 

 Data mining (DM) is the process of identifying patterns in large sets of data, to 

find that new knowledge. 

 

Practical 

Step 1: Open Weka 

 

Step 2: Click on Explorer 



 

Step 3: Click on Open File Option and browse for created file  

 

Step 4: Click on Choose button and Select Filter->Unsupervised Learning-> 

Attributes->StringtoVector option 



 

Step 5: Click on the StringtoVector  

 

Step 6: ObjectEditor appears 



 

Step 7: Make the following changes 



 

Step 8: Click on Apply 



 

Step 9: Following will appear 

 

 



Step 10: Select one or two attributes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Practical 8:  

Aim: Prepare the Analysis services for Adventure Works Cycles  or (any other 

database) . Build the data mining model  and  implement Apriori algorithm. 

Theory: 

Apriori is a seminal algorithm proposed by R.Agrawal and R.Srikant in 1994 

formining frequent itemsets for Boolean association rules. The name of the algorithm 

is based on the fact that the algorithm uses prior knowledge of frequent itemset 

properties, as we shall see following. Apriori employs an iterative approach known as 

a level-wise search, where k-itemsets are used to explore(k+1)-itemsets. 

To improve the efficiency of the level-wise generation of frequent itemsets, an 

important property called the Apriori property, presented below, is used to reduce the 

search space. We will first describe this property, and then show an example 

illustrating its use. 

Apriori property: All nonempty subsets of a frequent itemset must also be 

frequent. 

A two-step process is followed, consisting of join and prune actions. 

The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk−1 

with itself. This set of candidates is denoted Ck. 

The prune step : Ck is a super set of Lk , that is , its members may or may not be 

frequent, but all of the frequentk-itemsets are included in Ck. A scan of the database 

to determine the count of each candidate in Ck would result in the determination of Lk 

Algorithm: Apriori Find frequent itemsets using an iterative level-wise approach 

based on candidate generation. 

 



 

Procedure: 

The R package “arules” is used for for implementing Apriori Algorithm.After the user 

installed the necessaries packages, he must load them. This can be done using the 

function "library(package name)". 

Reading the Data: 

Transactions can be read from files in the basket format, with the command 

read.transactions. 

>tr<-read.transactions("c:/rpracs/testfile.txt",format="basket",sep=",") 

 

The object ”tr” is used to store the transactions read from the file named ”testfile”, 

where each item is separated by a ”,”. ”testfile” could be, for example: 

A,B,C 

B,C 

A,B,D 

A,B,C,D 

A 

B 

 

One way to visualize the data is inspect(object). For example: 

>inspect(tr) 

 

items 



1 {A, 

   B, 

   C} 

2 {B, 

   C} 

3 {A, 

   B, 

   D} 

4 {A, 

   B, 

   C, 

   D} 

5 {A} 

6 {B} 

 

Additionally, you can visually inspect binary incidence matrices, or plot the frequency 

of items sets: 

 

>image(tr) 

>itemFrequencyPlot(tr, support = 0.1) 

 

 

 

Figure:Output of >image(tr) 

 



 

Figure:Output of>itemFrequencyPlot(tr, support = 0.1) 

To show the number of items in transactions read from the file named ”teste” do: 

>length(tr) 

[1] 6 

 

Rules: 

The function to mine frequent itemsets, association rules or association hyperedges, 

using the Apriori algorithm, takes 2 parameters: 

Data: the object that contains the data 

parameter: a multi-dimensional parameter to set up support and confidence 

For example, using the dataset gathered in the previous section: 

>rules <- apriori(tr, parameter= list(supp=0.5, conf=0.5)) 

 

The rules can be visualized with the command inspect: 

>inspect(rules) 

 

    rhs    support confidence lift 

1 {} => {C} 0.5000000 0.5000000 1.0 

2 {} => {A} 0.6666667 0.6666667 1.0 

3 {} => {B} 0.8333333 0.8333333 1.0 

4 {C} => {B} 0.5000000 1.0000000 1.2 

5 {B} => {C} 0.5000000 0.6000000 1.2 

6 {A} => {B} 0.5000000 0.7500000 0.9 

7 {B} => {A} 0.5000000 0.6000000 0.9 

 



To get a summary of the rules’ characteristics, the function ”summary” can be 

used: 

>summary(rules) 

 

set of 7 rules 

 

rule length distribution (lhs + rhs):sizes 

1 2 

3 4 

 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  1.000   1.000   2.000   1.571   2.000   2.000 

 

summary of quality measures: 

    support         confidence          lift 

 Min.   :0.5000   Min.   :0.5000   Min.   :0.900 

 1st Qu.:0.5000   1st Qu.:0.6000   1st Qu.:0.950 

 Median :0.5000   Median :0.6667   Median :1.000 

 Mean   :0.5714   Mean   :0.7071   Mean   :1.029 

 3rd Qu.:0.5833   3rd Qu.:0.7917   3rd Qu.:1.100 

 Max.   :0.8333   Max.   :1.0000   Max.   :1.200 

 

mining info: 

 data ntransactions support confidence 

   tr             6     0.5        0.5 

 

Outher quality measures of the rules can be displaed with: 

>interestMeasure(rules, c("support", "chiSquare", "confidence", "conviction", 

"cosine", "coverage", "leverage", "lift", "oddsRatio"), tr) 

 

    support chiSquare confidence conviction    cosine  coverage    leverage 

1 0.5000000       NaN  0.5000000  1.0000000 0.7071068 1.0000000  0.00000000 

2 0.6666667       NaN  0.6666667  1.0000000 0.8164966 1.0000000  0.00000000 

3 0.8333333       NaN  0.8333333  1.0000000 0.9128709 1.0000000  0.00000000 

4 0.5000000       1.2  1.0000000        Inf 0.7745967 0.5000000  0.08333333 

5 0.5000000       1.2  0.6000000  1.2500000 0.7745967 0.8333333  0.08333333 

6 0.5000000       0.6  0.7500000  0.6666667 0.6708204 0.6666667 -0.05555556 

7 0.5000000       0.6  0.6000000  0.8333333 0.6708204 0.8333333 -0.05555556 

  lift oddsRatio 

1  1.0       NaN 

2  1.0       NaN 

3  1.0       NaN 

4  1.2       Inf 

5  1.2       Inf 

6  0.9         0 



7  0.9         0 

To calculate a single measure and add it to the quality slot: 

>quality(rules)<- cbind(quality(rules), hyperConfidence =interestMeasure(rules, 

method = "hyperConfidence", a)) 

>inspect(head(SORT(rules, by = "hyperConfidence"))) 

 

lhs    rhs   support confidence lift hyperConfidence 

1 {C} => {B} 0.5000000  1.0000000  1.2       0.9789272 

2 {B} => {C} 0.5000000  0.6000000  1.2       0.9789272 

3 {}  => {C} 0.5000000  0.5000000  1.0       0.0000000 

4 {}  => {A} 0.6666667  0.6666667  1.0       0.0000000 

5 {}  => {B} 0.8333333  0.8333333  1.0       0.0000000 

6 {A} => {B} 0.5000000  0.7500000  0.9       0.0000000 

Finally, to send the output to a file use: 

>sink("sink-examp.txt") 

>inspect(head(SORT(rules, by = "hyperConfidence"))) 


