

M.Sc. – I.T.

Semester I

Data Mining

Sr.

No.

Title Sign

1 Prepare the Analysis services for Adventure Works
Cycles or (any other database) Build the data mining
model structure and built the decision tree with proper
decision nodes. And infer atleast five different types of
reports

2 Prepare the Analysis services for Adventure Works
Cycles or (any other database) .Build the data mining
model structure. Implement the clustering Algorithm.

3 Prepare the Analysis services for Adventure Works
Cycles or (any other database) .Build the data mining
model structure and Implement Naïve Bayes Algorithm.

4 Prepare the Analysis services for Adventure Works
Cycles or (any other database) .Build the basic Time
series model structure and create the predictions

5 Prepare the Analysis services for Adventure Works
Cycles or (any other database) .Build the basic data
mining model and show the implementation of
Association algorithm

6 Using R-Tool, show the analysis for social networking
sites.

7 Consider the suitable data for text mining and Implement
the Text Mining technique using R-Tool

8 Consider the suitable data for Apriori Algorithm and
Implement the Apriori Algorithm using R-Tool.

Practical 1:

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other

database) Build the data mining model structure and built the decision tree with proper

decision nodes. And infer atleast five different types of reports

Theory:

Decision tree induction is the learning of decision trees from class- labelled training

tuples. A decision tree is a flowchart- like tree structure, where each internal node

(non leaf node) denotes a test on an attribute ,each branch represents an outcome of

the test ,and each leaf node (or terminal node) holds a class label. The topmost node in

a tree is the root node. Internal nodes are denoted by rectangles, and leaf nodes are

denoted by ovals.

A typical decision tree is shown in Figure. It represents the concept buys computer,

that is, it predicts whether a customer at AllElectronics is likely to purchase a

computer.

The benefits of having a decision tree are as follows −

 It does not require any domain knowledge.

 It is easy to comprehend.

 The learning and classification steps of a decision tree are simple and fast.

Tree Pruning

Tree pruning is performed in order to remove anomalies in the training data due to

noise or outliers. The pruned trees are smaller and less complex.

Tree Pruning Approaches

There are two approaches to prune a tree −

 Pre-pruning − The tree is pruned by halting its construction early.

 Post-pruning - This approach removes a sub-tree from a fully grown tree.

Cost Complexity

The cost complexity is measured by the following two parameters −

 Number of leaves in the tree, and

 Error rate of the tree.

Practical

Step 1: Open Weka

Step 2: Click on Explorer

Step 3: Click on Open File Option

Step 4: Go to C://Program Files/Weka-3-8/data. Select weather.nominal.arff

database

Step 5: Open the database

Step 6: Select all the attributes

Step 7: Go to Classify tab

Step 8: Choose algorithm to apply. For that Go to->Choose tab->Trees-> J48

Step 9: Click on Start Button

Step 10: Right click on the created structure and select Visualize Tree option

Step 11: View the Decision tree

Practical 2:

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other

database) .Build the data mining model structure and Implement the clustering

Algorithm.

Theory: Clustering can be considered the most important unsupervised

learning problem. So, as every other problem of this kind, it deals with finding

a structure in a collection of unlabelled data.

A loose definition of clustering could be “the process of organizing objects into

groups whose members are similar in some way”.

A cluster is therefore a collection of objects which are “similar” between them and are

“dissimilar” to the objects belonging to other clusters.

We can show this with a simple graphical example:

In this case we easily identify the 4 clusters into which the data can be divided; the

similarity criterion is distance: two or more objects belong to the same cluster if they

are “close” according to a given distance (in this case geometrical distance). This is

called distance-based clustering.

Another kind of clustering is conceptual clustering: two or more objects belong to the

same cluster if this one defines a concept common to all that objects. In other words,

objects are grouped according to their fit to descriptive concepts, not according to

simple similarity measures.

The goal of clustering is to determine the intrinsic grouping in a set of unlabelled data.

But how to decide what constitutes a good clustering? It can be shown that there is no

absolute “best” criterion which would be independent of the final aim of the

clustering. Consequently, it is the user which must supply this criterion, in such a way

that the result of the clustering will suit their needs.

Clustering algorithms may be classified as listed below:

 Exclusive Clustering

 Overlapping Clustering

 Hierarchical Clustering

 Probabilistic Clustering

K-means is an exclusive clustering algorithm. K-means is one of the simplest

unsupervised learning algorithms that solve the well-known clustering problem.

The algorithm is composed of the following steps:

1. Place K points into the space represented by the objects that are

being clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the

K centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This

produces a separation of the objects into groups from which the

metric to be minimized can be calculated.

Practical

Step 1: Open Weka

Step 2: Click on Explorer

Step 3: Click on Open File Option

Step 4: Go to C://Program Files/Weka-3-8/data. Select diabetes.arff database

Step 5: Go to Cluster tab and Choose SimpleKMeans algorithm

Step 6: Right Click on created project and select Visualize cluster assignments

Practical 3:

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other

database) . Build the data mining model structure and Implement Naïve Bayes

Algorithm.

Theory:

Bayesian classification is based on Bayes‟ theorem. Simple Bayesian classifier known

as the naive Bayesian classifier. Naïve Bayesian classifiers assume that the effect of an

attribute value on a given class is independent of the values of the other attributes.

This assumption is called class conditional independence. It is made to simplify the

computations involved and, in this sense, is considered “naïve.”

What is Naive Bayes algorithm?

It is a classification technique based on Bayes‟ Theorem with an assumption of

independence among predictors. In simple terms, a Naive Bayes classifier assumes

that the presence of a particular feature in a class is unrelated to the presence of any

other feature. For example, a fruit may be considered to be an apple if it is red, round,

and about 3 inches in diameter. Even if these features depend on each other or upon

the existence of the other features, all of these properties independently contribute to

the probability that this fruit is an apple and that is why it is known as „Naive‟.

Naive Bayes model is easy to build and particularly useful for very large data sets.

Along with simplicity, Naive Bayes is known to outperform even highly sophisticated

classification methods.

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c),

P(x) and P(x|c). Look at the equation below:

Above,

 P(c|x) is the posterior probability of class (c, target)

given predictor (x, attributes).

 P(c) is the prior probability of class.

https://www.analyticsvidhya.com/wp-content/uploads/2015/09/Bayes_rule-300x172.png

 P(x|c) is the likelihood which is the probability of predictor given class.

 P(x) is the prior probability of predictor.

How Naive Bayes algorithm works?

Let‟s understand it using an example. Below I have a training data set of weather and

corresponding target variable „Play‟ (suggesting possibilities of playing). Now, we

need to classify whether players will play or not based on weather condition. Let‟s

follow the below steps to perform it.

Step 1: Convert the data set into a frequency table

Step 2: Create Likelihood table by finding the probabilities like Overcast probability =

0.29 and probability of playing is 0.64.

Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for

each class. The class with the highest posterior probability is the outcome of

prediction.

Problem: Players will play if weather is sunny. Is this statement is correct?

We can solve it using above discussed method of posterior probability.

P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P (Sunny)

Here we have P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P(Yes)= 9/14 =

0.64

Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability.

Naive Bayes uses a similar method to predict the probability of different class based

on various attributes. This algorithm is mostly used in text classification and with

problems having multiple classes.

https://www.analyticsvidhya.com/wp-content/uploads/2015/08/Bayes_41.png

 What are the Pros and Cons of Naive Bayes?

Pros:

 It is easy and fast to predict class of test data set. It also perform well in multi

class prediction

 When assumption of independence holds, a Naive Bayes classifier performs

better compare to other models like logistic regression and you need less

training data.

 It perform well in case of categorical input variables compared to numerical

variable(s). For numerical variable, normal distribution is assumed (bell curve,

which is a strong assumption).

Cons:

 If categorical variable has a category (in test data set), which was not observed

in training data set, then model will assign a 0 (zero) probability and will be

unable to make a prediction. This is often known as “Zero Frequency”. To

solve this, we can use the smoothing technique. One of the simplest smoothing

techniques is called Laplace estimation.

 On the other side naive Bayes is also known as a bad estimator, so the

probability outputs from predict_proba are not to be taken too seriously.

 Another limitation of Naive Bayes is the assumption of independent predictors.

In real life, it is almost impossible that we get a set of predictors which are

completely independent.

4 Applications of Naive Bayes Algorithms

 Real time Prediction: Naive Bayes is an eager learning classifier and it is

sure fast. Thus, it could be used for making predictions in real time.

 Multi class Prediction: This algorithm is also well known for multi class

prediction feature. Here we can predict the probability of multiple classes of

target variable.

 Text classification/ Spam Filtering/ Sentiment Analysis: Naive Bayes

classifiers mostly used in text classification (due to better result in multi class

problems and independence rule) have higher success rate as compared to other

algorithms. As a result, it is widely used in Spam filtering (identify spam e-

mail) and Sentiment Analysis (in social media analysis, to identify positive and

negative customer sentiments)

 Recommendation System: Naive Bayes Classifier and Collaborative

Filtering together builds a Recommendation System that uses machine learning

and data mining techniques to filter unseen information and predict whether a

user would like a given resource or not

https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering

Step 1: Open Weka

Step 2: Click on Explorer

Step 3: Click on Open File Option

Step 4: Go to C://Program Files/Weka-3-8/data. Select soyabean.arff database

Step 5: Go to Classify tab and Select Naïve Bayes algorithm under Bayes tab

Step 6: Right Click on created structure and select Visualize Classifier Errors

Step 7: Explore Visualize Threshold Curve

Step 8: Explore Cost Benefit Analysis

Step 9: Explore Cost Curve

Practical 4:

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other

database).Build the basic Time series model structure and create the predictions

Theory: The Time Series mining function enables forecasting of time series values.

Similar to common regression methods, time series algorithms predict a numerical

value. In contrast to common regression methods, time series predictions are focused

on future values of an ordered series. These predictions are commonly called

forecasts.

The time series algorithms are univariate algorithms. This means that the independent

variable is a time column or an order column. The forecasts are based on past values.

They are not based on other independent columns.

Time series algorithms are different from common regression algorithms because they

do not only predict future values but also incorporate seasonal cycles into the forecast.

Time series algorithms

The Time Series mining function provides algorithms that are based on different

underlying model assumptions with several parameters. The learning algorithms try to

find the best model and the best parameter values for the given data.

If you do not specify a seasonal cycle, it is automatically determined. Also, missing

values and non-equidistant time series are automatically interpolated.

The Time Series mining function provides the following algorithms to predict future

trends:

 Autoregressive Integrated Moving Average (ARIMA)

 Exponential Smoothing

 Seasonal Trend Decomposition

Which of the algorithms creates the best forecast of your data depends on different

model assumptions. You can calculate all forecasts at the same time. The algorithms

calculate a detailed forecast including seasonal behaviour of the original time series.

With the Time Series Visualizer, you can evaluate and compare the resulting curves.

Autoregressive Integrated Moving Average (ARIMA)

The ARIMA algorithm also incorporates seasonal components. Therefore this

algorithm is also referred to as Seasonal ARIMA (SARIMA).

The autoregressive part of the algorithm uses weighted previous values while the

moving average part weighs the previously assumed errors of the time series.

The ARIMA algorithm assumes the error to be independent and identically distributed

from a normal distribution with zero mean. The basic ARMA model works for

stationary time series only. Stationary time series contain equal mean and equal

variance for the whole time series. Therefore the integrated part creates stationary

series by differentiation.

Exponential Smoothing

Exponential Smoothing can consist of the following components:

 Basic level at a certain point in time.

 Trend.

The trend can have additive or multiplicative characteristics. Also, it can be

damped or non-damped.

 The seasonal component.

Dependant on the data, trend and the seasonal component are optional. There are

ARIMA models that correspond to Exponential Smoothing models and vice versa.

Seasonal Trend Decomposition

Seasonal Trend Decomposition fits different seasonal trend functions to the given data

and selects the best seasonal trend function according to an error measure. The

following trends are used during the training run:

 Linear trend

 Quadratic trend

 Cubic trend

 Logarithmic trend

 Exponential trend

 Hyperbolic trend

The seasonality is incorporated in an additive or multiplicative way.

Practical

Step 1: Open Weka

Step 2: Click on Explorer

Step 3: For this practical we need to install Forecast, as you can see last tab in

Visualize tab and we need to install one more tab Forecast.

Step 4: Open Weka-> Click on Tools-> Select Package Manager

Step 5: Following is the Package Manager through which we need to install

Step 6: Scroll Down and Select timeSeriesForecasting

Step 7: Click on Install

Step 8: Now again go to Explorer and you can find new tab is been added

Step 9: Create the following database. Open Notepad and type the following

@relation AnkaraPopulation

@attribute year numeric

@attribute population numeric

@data

2007, 70586256

2008,71517100

2009,72561312

2010,73722988

Save the file with .arff extension

Step 10: Open the created database

Step 11: Go to Forecast tab and under basic configuration do the following

changes:

Step 12: Go to Advanced Configuration tab and select LinearRegression

Algorithm under functions option.

Step 13: Click on start button

Step 14: Go to Train future pred option.

Practical 5:

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other

database) .Build the basic data mining model and show the implementation of

Association algorithm. And also apply the DMX queries.

Theory:

Rule support and confidence are two measures of rule interestingness. They

respectively reflect the usefulness and certainty of discovered rules. Asupport of 2%

for Association Rule means that 2% of all the transactions under analysis show that

computer and antivirus software are purchased together. A confidence of 60% means

that 60% of the customers who purchased a computer also bought the software.

Typically, association rules are considered interesting if they satisfy both a minimum

support threshold and a minimum confidence threshold.

A transaction T is said to contain A if and only if A ⊆ T. An association rule is an

implication of the form A ⇒B, where A ⊂ I ,B ⊂ I ,and A∩B = φ. The rule A ⇒B

holds in the transaction set D with support s, where s is the percentage of transactions

in D that contain A∪B (i.e., the union of sets A and B, or say, both A and B).

This is taken to be the probability, P(A∪B).1 The rule A ⇒ B has confidence c in the

transaction set D, where c is the percentage of transactions in D containing A that also

contain B. This is taken to be the conditional probability, P(B|A). That is,

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets:

By definition, each of these itemsets will occur at least as frequently as a

predetermined minimum support count, min sup.

2. Generate strong association rules from the frequent itemsets:

 By definition, these rules must satisfy minimum support and minimum

confidence.

Step 1: Open Weka

Step 2: Click on Explorer

Step 3: Click on Open File Option

Step 4: Go to C://Program Files/Weka-3-8/data. Select weather.nomial.arff

database. Select all the attributes.

Step 5: Go to Associate tab and Choose Apriori Algorithm

Step 6: Right Click on created structure and select View in separate window

Practical 6:

Aim: Using R-Tool , show the analysis for social networking sites.

Theory:

Social network analysis is based on an assumption of the importance of relationships

among interacting units.

The social network perspective encompasses theories, models, and applications that

are expressed in terms of relational concepts or processes.

Along with growing interest and increased use of network analysis has come a

consensus about the central principles underlying the network perspective. In addition

to the use of relational concepts, we note the following as being important:

 Actors and their actions are viewed as interdependent rather than independent,

autonomous units

 Relational ties (linkages) between actors are channels for transfer or "flow" of

resources (either material or nonmaterial)

 Network models focusing on individuals view the network structural

environment as providing opportunities for or constraints on individual action

 Network models conceptualize structure (social, economic, political, and so

forth) as lasting patterns of relations among actors

The unit of analysis in network analysis is not the individual, but an entity consisting

of a collection of individuals and the linkages among them.

Network methods focus on dyads (two actors and their ties), triads (three actors and

their ties), or larger systems (subgroups of individuals, or entire networks.

Social network analysis [SNA] is the mapping and measuring of relationships and

flows between people, groups, organizations, computers or other

information/knowledge processing entities.

The nodes in the network are the people and groups while the links show relationships

or flows between the nodes. SNA provides both a visual and a mathematical analysis

of complex human systems.

Procedure

The data to analyze is Twitter text dataand it can be downloaded as file

"termDocMatrix.rdata" athttp://www.rdatamining.com/data .

http://www.rdatamining.com/data

 1) Load Data

> # load termDocMatrix

> load(“data/termDocMatrix.rdata”)

> # inspect part of the matrix

> termDocMatrix[5:10,1:20]

 Docs

Terms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

data 1 1 0 0 2 0 0 0 0 0 1 2 1 1 1 0 1 0 0 0

examples 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

introduction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

mining 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0

network 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

package 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 2) Transform Data into an Adjacency Matrix

> # change it to a Boolean matrix

> termDocMatrix[termDocMatrix>=1] <- 1

> # transform into a term-term adjacency matrix

> termMatrix <- termDocMatrix %*% t(termDocMatrix)

> # inspect terms numbered 5 to 10

> termMatrix[5:10,5:10]

 Terms

Terms data examples introduction mining network package

data 53 5 2 34 0 7

examples 5 17 2 5 2 2

introduction 2 2 10 2 2 0

mining 34 5 2 47 1 5

network 0 2 2 1 17 1

package 7 2 0 5 1 21

 3)Build a Graph

Now we have built a term-term adjacency matrix, where the rows and columns

represents terms, and every entry is the number of co-occurrences of two terms. Next

we can build a graph with graph.adjacency() from package igraph.

> library(igraph)

> # build a graph from the above matrix

> g <- graph.adjacency(termMatrix, weighted=T, mode = “undirected”)

> # remove loops

> g <- simplify(g)

> # set labels and degrees of vertices

> V(g)$label <- V(g)$name

> V(g)$degree <- degree(g)

 4) Plot a Graph

> # set seed to make the layout reproducible

> set.seed(3952)

> layout1 <- layout.fruchterman.reingold(g)

> plot(g, layout=layout1)

A different layout can be generated with the first line of code below. The second line

produces an interactive plot, which allows us to manually rearrange the layout. Details

about other layout options can be obtained by running ?igraph::layout in R.

> plot(g, layout=layout.kamada.kawai)

> tkplot(g, layout=layout.kamada.kawai)

Practical 7:

Aim: Consider the suitable data for text mining and Implement the Text Mining

technique using R-Tool

Theory:

 Text mining, which is sometimes referred to “text analytics” is one way to make

qualitative or “unstructured” data usable by a computer.

Qualitative data is descriptive data that cannot be measured in numbers and often

includes qualities of appearance like color, texture, and textual description.

Quantitative data is numerical, structured data that can be measured. However, there is

often slippage between qualitative and quantitative categories. For example, a

photograph might traditionally be considered “qualitative data” but when you break it

down to the level of pixels, which can be measured.

Text mining is defined as the process or practice of examining large collections of

written resources in order to generate new information, typically using specialized

computer software. It is a subset of the larger field of data mining.

Some applications of text-mining include:

 Enterprise Business Intelligence/Data Mining, Competitive Intelligence

 E-Discovery, Records Management

 National Security/Intelligence

 Scientific discovery, especially Life Sciences

 Search/Information Access

 Social media monitoring

 “Text mining involves the application of techniques from areas such as information

retrieval, natural language processing, information extraction and data mining. These

various stages of a text-mining process can be combined into a single workflow”.

 Information retrieval (IR) systems match a user‟s query to documents in a

collection or database. The first step in the text mining process is to find the body

of documents that are relevant to the research question(s).

 Natural language processing (NLP) analyzes the text in structures based on

human speech. It allows the computer to perform a grammatical analysis of a

sentence to “read” the text.

 Information extraction (IE) involves structuring the data that the NLP system

generates.

 Data mining (DM) is the process of identifying patterns in large sets of data, to

find that new knowledge.

Practical

Step 1: Open Weka

Step 2: Click on Explorer

Step 3: Click on Open File Option and browse for created file

Step 4: Click on Choose button and Select Filter->Unsupervised Learning->

Attributes->StringtoVector option

Step 5: Click on the StringtoVector

Step 6: ObjectEditor appears

Step 7: Make the following changes

Step 8: Click on Apply

Step 9: Following will appear

Step 10: Select one or two attributes

Practical 8:

Aim: Prepare the Analysis services for Adventure Works Cycles or (any other

database) . Build the data mining model and implement Apriori algorithm.

Theory:

Apriori is a seminal algorithm proposed by R.Agrawal and R.Srikant in 1994

formining frequent itemsets for Boolean association rules. The name of the algorithm

is based on the fact that the algorithm uses prior knowledge of frequent itemset

properties, as we shall see following. Apriori employs an iterative approach known as

a level-wise search, where k-itemsets are used to explore(k+1)-itemsets.

To improve the efficiency of the level-wise generation of frequent itemsets, an

important property called the Apriori property, presented below, is used to reduce the

search space. We will first describe this property, and then show an example

illustrating its use.

Apriori property: All nonempty subsets of a frequent itemset must also be

frequent.

A two-step process is followed, consisting of join and prune actions.

The join step: To find Lk, a set of candidate k-itemsets is generated by joining Lk−1

with itself. This set of candidates is denoted Ck.

The prune step : Ck is a super set of Lk , that is , its members may or may not be

frequent, but all of the frequentk-itemsets are included in Ck. A scan of the database

to determine the count of each candidate in Ck would result in the determination of Lk

Algorithm: Apriori Find frequent itemsets using an iterative level-wise approach

based on candidate generation.

Procedure:

The R package “arules” is used for for implementing Apriori Algorithm.After the user

installed the necessaries packages, he must load them. This can be done using the

function "library(package name)".

Reading the Data:

Transactions can be read from files in the basket format, with the command

read.transactions.

>tr<-read.transactions("c:/rpracs/testfile.txt",format="basket",sep=",")

The object ”tr” is used to store the transactions read from the file named ”testfile”,

where each item is separated by a ”,”. ”testfile” could be, for example:

A,B,C

B,C

A,B,D

A,B,C,D

A

B

One way to visualize the data is inspect(object). For example:

>inspect(tr)

items

1 {A,

 B,

 C}

2 {B,

 C}

3 {A,

 B,

 D}

4 {A,

 B,

 C,

 D}

5 {A}

6 {B}

Additionally, you can visually inspect binary incidence matrices, or plot the frequency

of items sets:

>image(tr)

>itemFrequencyPlot(tr, support = 0.1)

Figure:Output of >image(tr)

Figure:Output of>itemFrequencyPlot(tr, support = 0.1)

To show the number of items in transactions read from the file named ”teste” do:

>length(tr)

[1] 6

Rules:

The function to mine frequent itemsets, association rules or association hyperedges,

using the Apriori algorithm, takes 2 parameters:

Data: the object that contains the data

parameter: a multi-dimensional parameter to set up support and confidence

For example, using the dataset gathered in the previous section:

>rules <- apriori(tr, parameter= list(supp=0.5, conf=0.5))

The rules can be visualized with the command inspect:

>inspect(rules)

 rhs support confidence lift

1 {} => {C} 0.5000000 0.5000000 1.0

2 {} => {A} 0.6666667 0.6666667 1.0

3 {} => {B} 0.8333333 0.8333333 1.0

4 {C} => {B} 0.5000000 1.0000000 1.2

5 {B} => {C} 0.5000000 0.6000000 1.2

6 {A} => {B} 0.5000000 0.7500000 0.9

7 {B} => {A} 0.5000000 0.6000000 0.9

To get a summary of the rules’ characteristics, the function ”summary” can be

used:

>summary(rules)

set of 7 rules

rule length distribution (lhs + rhs):sizes

1 2

3 4

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 1.000 2.000 1.571 2.000 2.000

summary of quality measures:

 support confidence lift

 Min. :0.5000 Min. :0.5000 Min. :0.900

 1st Qu.:0.5000 1st Qu.:0.6000 1st Qu.:0.950

 Median :0.5000 Median :0.6667 Median :1.000

 Mean :0.5714 Mean :0.7071 Mean :1.029

 3rd Qu.:0.5833 3rd Qu.:0.7917 3rd Qu.:1.100

 Max. :0.8333 Max. :1.0000 Max. :1.200

mining info:

 data ntransactions support confidence

 tr 6 0.5 0.5

Outher quality measures of the rules can be displaed with:

>interestMeasure(rules, c("support", "chiSquare", "confidence", "conviction",

"cosine", "coverage", "leverage", "lift", "oddsRatio"), tr)

 support chiSquare confidence conviction cosine coverage leverage

1 0.5000000 NaN 0.5000000 1.0000000 0.7071068 1.0000000 0.00000000

2 0.6666667 NaN 0.6666667 1.0000000 0.8164966 1.0000000 0.00000000

3 0.8333333 NaN 0.8333333 1.0000000 0.9128709 1.0000000 0.00000000

4 0.5000000 1.2 1.0000000 Inf 0.7745967 0.5000000 0.08333333

5 0.5000000 1.2 0.6000000 1.2500000 0.7745967 0.8333333 0.08333333

6 0.5000000 0.6 0.7500000 0.6666667 0.6708204 0.6666667 -0.05555556

7 0.5000000 0.6 0.6000000 0.8333333 0.6708204 0.8333333 -0.05555556

 lift oddsRatio

1 1.0 NaN

2 1.0 NaN

3 1.0 NaN

4 1.2 Inf

5 1.2 Inf

6 0.9 0

7 0.9 0

To calculate a single measure and add it to the quality slot:

>quality(rules)<- cbind(quality(rules), hyperConfidence =interestMeasure(rules,

method = "hyperConfidence", a))

>inspect(head(SORT(rules, by = "hyperConfidence")))

lhs rhs support confidence lift hyperConfidence

1 {C} => {B} 0.5000000 1.0000000 1.2 0.9789272

2 {B} => {C} 0.5000000 0.6000000 1.2 0.9789272

3 {} => {C} 0.5000000 0.5000000 1.0 0.0000000

4 {} => {A} 0.6666667 0.6666667 1.0 0.0000000

5 {} => {B} 0.8333333 0.8333333 1.0 0.0000000

6 {A} => {B} 0.5000000 0.7500000 0.9 0.0000000

Finally, to send the output to a file use:

>sink("sink-examp.txt")

>inspect(head(SORT(rules, by = "hyperConfidence")))

