	Unit 1
1	What is data mining and data warehouse?
2	Compare data base processing Vs. data mining processing.
3	Explain applications of data mining in detail.
4	Explain all data mining models and tasks.
5	What is KDD? Explain with diagram.
6	Write a short note on visualization.
7	Discuss the issues in Data mining.
8	What is fuzzy logic? Explain in brief with example.
9	Define following terms:
	1. Information retrieval
	2. Precision
	3. Recall
	4. Similarity
	5. Granularities
	6. Facts
	7. Roll ups
	8. Drill down
10	
10	Define cube and explain with example.
11	Write a short note on star schema.
12	Explain characteristics of data warehouse.
13	Discuss the ways to improve the performance of data warehouse
1/	applications. Write a short note on OLAP operations
14	Write a short note on point estimation
15	Compute mean variance and standard deviation for (1.3.4.6.5)
10	Define
1/	1 Mean
	2 Median
	2. Median
	J. Would
	4. Variance 5. Step dend desistion (Seconds/Denselsticn)
	5. Standard deviation (Sample/Population)
	0. Bias
18	Compute mean median and mode for (15, 10, 18, 20, 28, 32)
19	What is Jackknife estimate technique?
20	Find out Jackknife estimate for variance $X = \{1, 5, 6\}$
20	Mean $X = \{5, 6, 6\}$
21	Estimate P that maximizes the likelihood that the given sequence of
	heads and tails would occur for {H, H, H, T, T} Note: Assume coin
	with H and T equally likely.

22	Estimate the Expectation N	missing data and o Maximization {1, 5	continues until (5, 10, 4, *, *}. (0	convergence using Guess $\mu^0=3$)					
23	Prove that X	1 belongs to class	s h2 using Baye	s theorem.					
	ID Incom	ne Credit	Class	xi					
	1 4	Excellent	h1	x4					
	2 3	Good	h1	×7					
	$\begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix}$	Excellent	h1	x7 x2					
		Good	h1	x7					
	5 4	Good	h1	x8					
	6 2	Excellent	h1	x2					
	$\begin{array}{c c} \hline 0 & 2 \\ \hline 7 & 3 \end{array}$	Bad	h2	<u>x11</u>					
	8 2	Bad	<u>h2</u>						
	$\frac{0}{9}$ $\frac{2}{3}$	Bad	<u>n/</u> h3	x10 x11					
	10 1	Bad	h4	x0					
24	Write a short	note on Hypothes	is testing.						
25	5 Find Chi square statistics for								
	Observed value = $\{51, 95, 67, 78, 88\}$								
26	Expected value=76 Write a short note on linear regression								
20	Write a short note on non-linear regression.								
27	Explain corre	lation in detail	regression.						
20	Find correlati	on between Ice c	ream sales Vs to	emperature					
27				emperature					
	Temperature	e Ice Cream Sal	es (in						
	14.2	215							
	16.4	325							
	11.9	185							
	15.2	332							
	18.5	406							
30	Write a short	on similarity mea	sures						
50	Init ?	on shinar ny mea	54105.						
31	Explain the n	eed of data pre-p	rocessing						
32	List and expla	ain major tasks in	data processin	σ					
33	Explain term	s Quartile and Int	er-Quartile rand	5. 76					
34	What are Box	plot and Quantile	$\frac{1}{2}$ nlot?						
35	What is histo	gram and scatter	plot?						
36	Write a short	note on data clear	ning tasks						
37	Explain Binni	ing with example	ing tubito.						
38	Explain Data	aggregation gen	eralization and	smoothing					
39	Write a short	note on data tran	sformation	smoothing.					
40	Write a short	note on data norr	nalization						
41	Define	note on dutu norr	inalization.						
71	1 Assoc	iation rule							
	1. ASSOC								

	2. Support	
	3. Confidence	
42	Explain apriori algorithm with example.	
42a	Write a short note on Association rule mining.	
	Unit 3	
43	What is classification? Discuss the issues.	
44	What is prediction? Discuss the issues.	
45	Write a short note on decision tree.	
46	Write a short note on Bayesian classifier.	
47	Write a short note on Rule based classifier.	
48	Write a short note on Neural network classifier.	
49	Write a short note on Support Vector Machine.	
50	Define coverage and accuracy in rule based classifier.	
51	Explain triggering and firing of rules.	
52	Explain rule based and class based ordering.	
53	Discuss "The accuracy on its own is not a reliable estimate of rule	
54	Consider a training set that contains 100 positive examples and 400	
	negative examples for each of the following	
	candidate rule. R1 : A $+$ (covers 4 positive and	
	one negative examples) R2 : B $+$ (covers 30	
	positive and 10 negative examples) $R3 : C +$	
55	Consider a training set that contains 100 positive examples	+
55	and 400	
	negative examples for each of the following	
	candidate rule. R1 : A $+$ (covers 4 positive and	
	one negative examples) $R2 : B + (covers 30)$	
	positive and 10 negative examples) R3 : C +	
56	Consider a training set that contains 100 positive examples and 400	
	negative examples for each of the following	
	candidate rule. R1 : A $+$ (covers 4 positive and	
	one negative examples) R2 : B $+$ (covers 30	
	positive and 10 negative examples) $R3 : C +$	
57	Write the difference between classification and clustering	-
58	Explain supervised and unsupervised learning.	_
J0 50	Explain supervised and unsupervised learning.	_
J7 60	Explain term pruning and overflitting.	_
00	ruid unormation gain for income in following data	

RID	age	income	student	credit_rating	Class: buys_compute
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

	RID	age	income	student	credi	it_rating	Class: b	ouvs_combuter	
	1	vouth	high	no	fair	0		no	
	2	vouth	high	no	excel	lent		no	
	3	middle_aged	high	no	fair			ves	
	4	senior	medium	no	fair			ves	
	5	senior	low	yes	fair			ves	
	6	senior	low	yes	excel	lent		no	
	7	middle_aged	low	yes	excel	lent		yes	
	8	youth	medium	no	fair			no	
	9	youth	low	yes	fair			yes	
	10	senior	medium	yes	fair			yes	
	11	youth	medium	yes	excel	lent		yes	
	12	middle_aged	medium	no	excel	lent		yes	
	13	middle_aged	high	yes	fair			yes	
	14	senior	medium	no	excel	lent		no	
63	Find	out the nonul	ation for t	the year	2013 1	ising lin	aar ragi	ession	
05	THIU	out the popul		ine year	2015 u	ising mi	ear regi	6551011.	
	200	5 2006	200)7	2008	20	009	2013	
	12	19	28		35	4	5	?	
64	Write	e a short note	on confus	sion mat	rix.				
65	Class	ify $X_1=4$, X_2	=7 using H	K-neares	t neigh	bour (a	issume l	x=3).	
		V		V		Class			
		7		1		B			
		7		4		B			
		3		4		G			
		1		4		G			
	Unit	4							
66	List a	Ill the require	ments of c	clustering	g Data	mining	•		
67	Write	e a short note	on type of	f data in	cluster	ring ana	ılysis.		
68	Comp	pute Euclidear	n and Mar	nhattan	distanc	e for X	$_{1}(1,2)$ a	and $X_2(3,6)$.	
68 a	Com	oute Euclidear	n and Mai	nhattan	distanc	e for X	$_{1}(1,2)$	and $X_2(4,6)$.	
69	Com	oute							
	1. Sin	nilarity betwo	een A and	В					
	2. Sin	nilarity betwo	een C and	l B					
	3. Sin	nilarity betwo	een A and	C and c	omme	nt on th	e most s	similar	
	tuples	5.							
	Nor	a Condor	F		г	י <u>ו</u>	T7	T2	
		F Gender	Г V	N	1	D	12 P	13 N	
	B	Г	Y	N		Y	r N	P	
	C	F	Y	P	P	<u>,</u>	N	N	
		I		I			1		

70	Write a short no	te on K-	means c	lustering	g.					
71	Write a short no	te on K-1	medoids	cluster	ing.					
72	Write a short no	te on par	rtitioning	approa	ach.					
73	Write a short no	te on Hie	erarchica	l appro	ach.					
74	Write a short no	te on DI	BSCAN.							
75	List and discuss	major c	lustering	approa	ches.					
76	Write a short no	te on RC	OCK.							
77	Explain agglome	ration a	nd divisi	ve appr	oach.					
78	Apply hierarchic	al cluste	ering usi	ng single	e linkag	e to fol	low ing o	data.		
	A (1,1), B(1.5,1	.5), C(3,	,4), D(4,	4), E(3,	3.5)					
79	What are outliers	? How	to find c	out? Wri	te the ap	oplicatio	ns.			
	Unit5									
80	What is graph m	ining an	d social	netw or	k?					
81	What are multim	edia and	d spatial	databas	ses?					
82	Explain set and	listed va	lued attr	ibute w	ith exan	nple.				
83	Explain set and	complex	structur	re valueo	d attribu	ite.				
84	What is spatial a	ggregati	ion and a	approxin	nation?	Explain	with			
	example.									
85	Define plan, plar	1 databa	se and p	lan mini	ing.					
86	Explain the type	s of dim	ensions	in spatia	al data c	ube.				
87	Explain measures in spatial data cube.									
88	Discuss approac	hes for	similarity	based :	retrieval	in imag	ge datab	ase.		
89	Write a short no	te on mi	ning ass	ociation	in mult	imedia	data.			
90	Write a short no	te on tex	t mining	•						
91	Define 1. Term frequency 2. Term frequency matrix									
	3. Relative 4. Inverse c	term fre locumen	equency it freque	ency						
92	Compute TE ID	F and T	F-IDF f	or $t2$ in a	12 for fo	ollow ing	data			
12		I und I		01 02 11 0		10 11 115	uutu.			
	document/term	t.	ta	ta	t.	tr	te	<i>t</i> -		
		1	12	13	14	15	16 E	17		
		5	4	10	0 16	0	5	22		
		5	19	0	10	0	0	32 17		
	из Д.	15	2	12	4	5	15	17		
	da da	0	5 7	12	0	2	15	12		
	<i>u</i> 5	0	7	0	9	2	4	12		
									<u> </u>	
									1	

document/ter	m t_1	t_2	<i>t</i> 3	<i>t</i> 4	<i>t</i> 5	<i>t</i> ₆	<i>t</i> 7
d_1	0	4	10	8	0	5	0
d_2	5	19	7	16	0	0	32
d_3	15	0	0	4	9	0	17
d_4	22	3	12	0	5	15	0
d_5	0	7	0	9	2	4	12