

PL/SQL Tutorial

i

PL/SQL TUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

ii

 C O P Y R I G H T & D I S C L A I M E R N O T I C E

All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form without the
written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the accuracy of
the site or its contents including this tutorial. If you discover that the tutorialspoint.com site or this tutorial
content contains some errors, please contact us at webmaster@tutorialspoint.com

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

iii

 ABOUT THE TUTORIAL

PL/SQL Tutorial
PL/SQL is a combination of SQL along with the procedural features of programming languages. It was developed by Oracle
Corporation in the early 90's to enhance the capabilities of SQL.

PL/SQL is one of three key programming languages embedded in the Oracle Database, along with SQL itself and Java.

This tutorial will give you great understanding on PL/SQL to proceed with Oracle database and other advanced RDBMS
concepts.

Audience
This tutorial is designed for Software Professionals, who are willing to learn PL/SQL Programming Language in simple and
easy steps. This tutorial will give you great understanding on PL/SQL Programming concepts, and after completing this
tutorial, you will be at intermediate level of expertise from where you can take yourself to higher level of expertise.

Prerequisites
Before proceeding with this tutorial, you should have a basic understanding of software basic concepts like what is
database, source code, text editor and execution of programs, etc. If you already have understanding on SQL and other
computer programming language, then it will be an added advantage to proceed.

Copyright & Disclaimer Notice

All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form without the
written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the accuracy of
the site or its contents including this tutorial. If you discover that the tutorialspoint.com site or this tutorial
content contains some errors, please contact us at webmaster@tutorialspoint.com

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

iii

Table of Contents

PL/SQL Overview ... 1

Features of PL/SQL ... 1

Advantages of PL/SQL .. 2

Environment ... 3

Step 1 .. 3

Step 2 .. 4

Step 3 .. 4

Step 4 .. 5

Step 5 .. 6

Step 6 .. 6

Step 7 .. 7

Step 8 .. 7

Step 9 .. 8

Step 10 .. 9

Step 11 .. 10

Final Step... 11

Text Editor ... 12

Basic Syntax .. 13

The 'Hello World' Example: .. 13

The PL/SQL Identifiers .. 14

The PL/SQL Delimiters .. 14

The PL/SQL Comments ... 15

PL/SQL Program Units .. 15

Data Types ... 17

PL/SQL Scalar Data Types and Subtypes ... 17

PL/SQL Numeric Data Types and Subtypes .. 18

PL/SQL Character Data Types and Subtypes ... 19

PL/SQL Boolean Data Types ... 19

PL/SQL Datetime and Interval Types .. 19

PL/SQL Large Object (LOB) Data Types ... 20

PL/SQL User-Defined Subtypes .. 21

iii

NULLs in PL/SQL .. 21

Variables .. 22

Variable Declaration in PL/SQL ... 22

Initializing Variables in PL/SQL .. 23

Variable Scope in PL/SQL ... 23

Assigning SQL Query Results to PL/SQL Variables 24

Constants ... 26

Declaring a Constant ... 26

The PL/SQL Literals .. 27

Operators ... 28

Arithmetic Operators .. 28

Example: .. 29

Relational Operators .. 29

Example: .. 29

Comparison Operators .. 30

LIKE Operator: ... 31

BETWEEN Operator: ... 31

IN and IS NULL Operators: .. 32

Logical Operators .. 33

Example: .. 33

PL/SQL Operator Precedence ... 33

Example: .. 34

Conditions .. 35

Syntax: ... 36

Flow Diagram: .. 36

Example 1: ... 37

Example 2: ... 37

Syntax: ... 38

Flow Diagram: .. 38

Example: .. 39

Syntax: ... 40

Example: .. 40

Syntax: ... 40

Flow Diagram: .. 41

Example: .. 41

Syntax: ... 42

Flow Diagram: .. 42

Example: .. 42

Syntax: ... 43

iii

Example: .. 43

Loops ... 44

Syntax: ... 45

Example: .. 45

Syntax: ... 46

Example: .. 46

Syntax: ... 47

Example: .. 47

Reverse FOR LOOP Statement ... 48

Example: .. 49

Labeling a PL/SQL Loop .. 50

The Loop Control Statements .. 51

Syntax: ... 51

Flow Diagram: .. 51

Example: .. 52

The EXIT WHEN Statement .. 52

Syntax: ... 52

Example: .. 52

Syntax: ... 53

Flow Diagram: .. 53

Example: .. 54

Syntax: ... 54

Flow Diagram: .. 55

Example: .. 55

Restrictions with GOTO Statement .. 56

Strings .. 57

Declaring String Variables ... 57

PL/SQL String Functions and Operators ... 58

Example 1 .. 60

Example 2 .. 60

Arrays... 62

Creating a Varray Type .. 62

Example 1 .. 63

Procedures ... 65

Parts of a PL/SQL Subprogram ... 65

Creating a Procedure ... 66

Example: .. 66

Executing a Standalone Procedure ... 67

Deleting a Standalone Procedure .. 67

iii

Parameter Modes in PL/SQL Subprograms .. 67

IN & OUT Mode Example 1 ... 68

IN & OUT Mode Example 2 ... 68

Methods for Passing Parameters ... 69

POSITIONAL NOTATION ... 69

NAMED NOTATION ... 69

MIXED NOTATION ... 69

Functions ... 70

Example: .. 71

Calling a Function .. 71

Example: .. 72

PL/SQL Recursive Functions ... 72

Cursors .. 74

Implicit Cursors .. 74

Example: .. 75

Explicit Cursors .. 76

Declaring the Cursor .. 76

Opening the Cursor ... 76

Fetching the Cursor ... 76

Closing the Cursor ... 77

Example: .. 77

Records .. 78

Table-Based Records .. 78

Cursor-Based Records .. 79

User-Defined Records ... 79

Defining a Record .. 80

Accessing Fields .. 80

Records as Subprogram Parameters .. 81

Exceptions ... 83

Syntax for Exception Handling ... 83

Example ... 83

Raising Exceptions .. 84

User-defined Exceptions .. 84

Example: .. 85

Pre-defined Exceptions .. 85

Triggers .. 88

Benefits of Triggers .. 88

Creating Triggers ... 89

Example: .. 89

iii

Triggering a Trigger ... 90

Packages ... 92

Package Specification ... 92

Package Body .. 93

Using the Package Elements ... 93

Example: .. 93

THE PACKAGE SPECIFICATION: ... 94

CREATING THE PACKAGE BODY: .. 94

USING THE PACKAGE: ... 95

Collections ... 96

Index-By Table ... 97

Example: .. 97

Example: .. 98

Nested Tables .. 98

Example: .. 99

Example: .. 99

Collection Methods .. 100

Collection Exceptions .. 101

Transactions .. 103

Starting an Ending a Transaction ... 103

Committing a Transaction .. 104

Rolling Back Transactions ... 104

Savepoints ... 104

Automatic Transaction Control ... 105

Date & Time ... 106

Field Values for Datetime and Interval Data Types 106

The Datetime Data Types and Functions .. 107

Examples: .. 109

The Interval Data Types and Functions ... 110

DBMS Output ... 111

DBMS_OUTPUT Subprograms ... 111

Example: .. 112

Object Oriented .. 113

Instantiating an Object ... 114

Member Methods ... 114

Using Map method ... 115

Using Order method .. 116

Inheritance for PL/SQL Objects: .. 117

Abstract Objects in PL/SQL ... 119

TUTORIALSPOINT

Simply Easy Learning Page 1

PL/SQL Overview

This chapter describes the basic definition and concepts PL/SQL:

The PL/SQL programming language was developed by Oracle Corporation in the late

1980s as procedural extension language for SQL and the Oracle relational database. Following
are notable facts about PL/SQL:

 PL/SQL is a completely portable, high-performance transaction-processing language.

 PL/SQL provides a built-in interpreted and OS independent programming environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming language.

 Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM DB2.

Features of PL/SQL
PL/SQL has the following features:

 PL/SQL is tightly integrated with SQL.

 It offers extensive error checking.

 It offers numerous data types.

 It offers a variety of programming structures.

 It supports structured programming through functions and procedures.

 It supports object-oriented programming.

CHAPTER

1

TUTORIALSPOINT

Simply Easy Learning Page 2

 It supports developing web applications and server pages.

Advantages of PL/SQL
PL/SQL has the following advantages:

 SQL is the standard database language and PL/SQL is strongly integrated with SQL. PL/SQL
supports both static and dynamic SQL. Static SQL supports DML operations and transaction
control from PL/SQL block. Dynamic SQL is SQL allows embedding DDL statements in PL/SQL
blocks.

 PL/SQL allows sending an entire block of statements to the database at one time. This
reduces network traffic and provides high performance for the applications.

 PL/SQL gives high productivity to programmers as it can query, transform, and update data
in a database.

 PL/SQL saves time on design and debugging by strong features, such as exception handling,
encapsulation, data hiding, and object-oriented data types.

 Applications written in PL/SQL are fully portable.

 PL/SQL provides high security level.

 PL/SQL provides access to predefined SQL packages.

 PL/SQL provides support for Object-Oriented Programming.

 PL/SQL provides support for Developing Web Applications and Server Pages.

TUTORIALSPOINT

Simply Easy Learning Page 3

Environment

This chapter describes the environment setup for starting with PL/SQL:

PL/SQL is not a stand-alone programming language; it is a tool within the Oracle

programming environment. SQL* Plus is an interactive tool that allows you to type SQL and
PL/SQL statements at the command prompt. These commands are then sent to the database for
processing. Once the statements are processed, the results are sent back and displayed on
screen.

To run PL/SQL programs, you should have Oracle RBDMS Server installed in your machine
which will take care of executing SQL commands. Most recent version of Oracle RDBMS is 11g.
You can download a trial version of Oracle 11g from the following link:

Download Oracle 11g Express Edition

You will have to download either 32bit or 64 bit version of the installation as per your operating
system. Usually there are two files, as I have downloaded for 64 bit Windows7. You will also use
similar steps on your operating system, does not matter if it is Linux or Solaris.

 win64_11gR2_database_1of2.zip

 win64_11gR2_database_2of2.zip

After downloading above two files, you will need to unzip them in a single
directory database and under that you will find following sub-directories:

Step 1
Now, let's launch Oracle Database Installer using setup file. Following is the first screen. You
can provide your email ID and uncheck, check box and click Next button:

CHAPTER

2

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html

TUTORIALSPOINT

Simply Easy Learning Page 4

Step 2
You will have the following screen, just uncheck the check box and click continue button to

proceed.

Step 3
Just select first option Create and Configure Database using radio button and click Next button

to proceed:

TUTORIALSPOINT

Simply Easy Learning Page 5

Step 4

I assume you are installing Oracle just for learning purpose and you will install it on your PC or
Laptop. So select Desktop Class option and click Next button to proceed:

TUTORIALSPOINT

Simply Easy Learning Page 6

Step 5
Provide a location, where you will install Oracle Server. Just modify Oracle Base and rest of the

locations will set automatically. Second, you will have to provide a password, which will be used
by system DBA. Once you provide required information, click Next button to proceed:

Step 6
Just click Next button to proceed:

TUTORIALSPOINT

Simply Easy Learning Page 7

Step 7

Now, click Finish button to proceed, this will start actual server installation.

Step 8
Just wait, until Oracle starts doing required configuration.

TUTORIALSPOINT

Simply Easy Learning Page 8

Step 9
Here, Oracle installation will copy required configuration files, so kindly just wait and watch:

TUTORIALSPOINT

Simply Easy Learning Page 9

Step 10

Once everything is done, you will have the following dialogue box. Just click OK button and

come out.

TUTORIALSPOINT

Simply Easy Learning Page 10

Step 11
Once your installation is done, you will have the following final window.

TUTORIALSPOINT

Simply Easy Learning Page 11

Final Step
If everything has been done successfully, then it's time to verify your installation. At your
command prompt, use the following command if you are using Windows:

 sqlplus "/ as sysdba"

If everything is fine, you should have SQL prompt where you will write your PL/SQL commands
and scripts:

TUTORIALSPOINT

Simply Easy Learning Page 12

Text Editor
Running large programs from command prompt may land you in inadvertently losing some of the
work. So a better option is to use command files. To use the command files:

 Type your code in a text editor, like Notepad, Notepad+, or EditPlus, etc.

 Save the file with the .sql extension in the home directory.

 Launch SQL*Plus command prompt from the directory where you created your PL/SQL file.

 Type @file_name at the SQL*Plus command prompt to execute your program.

If you are not using a file to execute PL/SQL scripts, then simply copy your PL/SQL code and
then right click on the black window having SQL prompt and use paste option to paste complete

code at the command prompt. Finally, just press enter to execute the code, if it is not already
executed.

TUTORIALSPOINT

Simply Easy Learning Page 13

Basic Syntax

This chapter describes the basic syntax followed:

PL/SQL is a block-structured language, meaning that PL/SQL programs are divided and

written in logical blocks of code. Each block consists of three sub-parts:

S.N. Sections & Description

1

Declarations
This section starts with the keyword DECLARE. It is an optional section and defines all

variables, cursors, subprograms, and other elements to be used in the program.

2

Executable Commands
This section is enclosed between the keywords BEGIN and END and it is a mandatory

section. It consists of the executable PL/SQL statements of the program. It should have at
least one executable line of code, which may be just a NULL command to indicate that
nothing should be executed.

3

Exception Handling
This section starts with the keyword EXCEPTION. This section is again optional and

contains exception(s) that handle errors in the program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within other
PL/SQL blocks using BEGIN and END. Here is the basic structure of a PL/SQL block:

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling>

END;

The 'Hello World' Example:
DECLARE

 message varchar2(20):= 'Hello, World!';

BEGIN

 dbms_output.put_line(message);

CHAPTER

3

TUTORIALSPOINT

Simply Easy Learning Page 14

END;

/

The end; line signals the end of the PL/SQL block. To run the code from SQL command line,
you may need to type / at the beginning of the first blank line after the last line of the code. When

the above code is executed at SQL prompt, it produces the following result:

Hello World

PL/SQL procedure successfully completed.

The PL/SQL Identifiers
PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved
words. The identifiers consist of a letter optionally followed by more letters, numerals, dollar
signs, underscores, and number signs and should not exceed 30 characters.

By default, identifiers are not case-sensitive. So you can use integer or INTEGER to

represent a numeric value. You cannot use a reserved keyword as an identifier.

The PL/SQL Delimiters
A delimiter is a symbol with a special meaning. Following is the list of delimiters in PL/SQL:

Delimiter Description

+, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

' Character string delimiter

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

" Quoted identifier delimiter

= Relational operator

@ Remote access indicator

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

<<, >> Label delimiter (begin and end)

TUTORIALSPOINT

Simply Easy Learning Page 15

/*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

.. Range operator

<, >, <=, >= Relational operators

<>, '=, ~=, ^= Different versions of NOT EQUAL

The PL/SQL Comments
Program comments are explanatory statements that you can include in the PL/SQL code that
you write and helps anyone reading its source code. All programming languages allow for some
form of comments.

The PL/SQL supports single-line and multi-line comments. All characters available inside any
comment are ignored by PL/SQL compiler. The PL/SQL single-line comments start with the
delimiter --(double hyphen) and multi-line comments are enclosed by /* and */.

DECLARE

 -- variable declaration

 message varchar2(20):= 'Hello, World!';

BEGIN

 /*

 * PL/SQL executable statement(s)

 */

 dbms_output.put_line(message);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Hello World

PL/SQL procedure successfully completed.

PL/SQL Program Units
A PL/SQL unit is any one of the following:

 PL/SQL block

 Function

 Package

 Package body

 Procedure

 Trigger

TUTORIALSPOINT

Simply Easy Learning Page 16

 Type

 Type body

Each of these units will be discussed in the forthcoming chapters.

TUTORIALSPOINT

Simply Easy Learning Page 17

Data Types

This chapter describes the Data Types used under PL/SQL:

PL/SQL variables, constants and parameters must have a valid data type which specifies

a storage format, constraints, and valid range of values. This tutorial will take you
through SCALAR and LOB data types available in PL/SQL and other two data types will be

covered in other chapters.

Category Description

Scalar
Single values with no internal components, such as a NUMBER, DATE,
or BOOLEAN.

Large Object (LOB)
Pointers to large objects that are stored separately from other data
items, such as text, graphic images, video clips, and sound waveforms.

Composite
Data items that have internal components that can be accessed
individually. For example, collections and records.

Reference Pointers to other data items.

PL/SQL Scalar Data Types and Subtypes
PL/SQL Scalar Data Types and Subtypes come under the following categories:

Date Type Description

Numeric Numeric values on which arithmetic operations are performed.

Character
Alphanumeric values that represent single characters or strings of
characters.

Boolean Logical values on which logical operations are performed.

Datetime Dates and times.

PL/SQL provides subtypes of data types. For example, the data type NUMBER has a subtype
called INTEGER. You can use subtypes in your PL/SQL program to make the data types
compatible with data types in other programs while embedding PL/SQL code in another
program, such as a Java program.

CHAPTER

4

TUTORIALSPOINT

Simply Easy Learning Page 18

PL/SQL Numeric Data Types and Subtypes
Following is the detail of PL/SQL pre-defined numeric data types and their sub-types:

Data Type Description

PLS_INTEGER
Signed integer in range -2,147,483,648 through 2,147,483,647,
represented in 32 bits

BINARY_INTEGER
Signed integer in range -2,147,483,648 through 2,147,483,647,
represented in 32 bits

BINARY_FLOAT Single-precision IEEE 754-format floating-point number

BINARY_DOUBLE Double-precision IEEE 754-format floating-point number

NUMBER(prec, scale)
Fixed-point or floating-point number with absolute value in range 1E-130
to (but not including) 1.0E126. A NUMBER variable can also represent 0.

DEC(prec, scale)
ANSI specific fixed-point type with maximum precision of 38 decimal
digits.

DECIMAL(prec, scale) IBM specific fixed-point type with maximum precision of 38 decimal digits.

NUMERIC(pre, secale) Floating type with maximum precision of 38 decimal digits.

DOUBLE PRECISION
ANSI specific floating-point type with maximum precision of 126 binary
digits (approximately 38 decimal digits)

FLOAT
ANSI and IBM specific floating-point type with maximum precision of 126
binary digits (approximately 38 decimal digits)

INT ANSI specific integer type with maximum precision of 38 decimal digits

INTEGER
ANSI and IBM specific integer type with maximum precision of 38
decimal digits

SMALLINT
ANSI and IBM specific integer type with maximum precision of 38
decimal digits

REAL
Floating-point type with maximum precision of 63 binary digits
(approximately 18 decimal digits)

Following is a valid declaration:

DECLARE

 num1 INTEGER;

 num2 REAL;

 num3 DOUBLE PRECISION;

BEGIN

 null;

END;

/

When the above code is compiled and executed, it produces the following result:

PL/SQL procedure successfully completed

TUTORIALSPOINT

Simply Easy Learning Page 19

PL/SQL Character Data Types and Subtypes
Following is the detail of PL/SQL pre-defined character data types and their sub-types:

Data Type Description

CHAR Fixed-length character string with maximum size of 32,767 bytes

VARCHAR2 Variable-length character string with maximum size of 32,767 bytes

RAW
Variable-length binary or byte string with maximum size of 32,767
bytes, not interpreted by PL/SQL

NCHAR
Fixed-length national character string with maximum size of 32,767
bytes

NVARCHAR2
Variable-length national character string with maximum size of 32,767
bytes

LONG Variable-length character string with maximum size of 32,760 bytes

LONG RAW
Variable-length binary or byte string with maximum size of 32,760
bytes, not interpreted by PL/SQL

ROWID Physical row identifier, the address of a row in an ordinary table

UROWID Universal row identifier (physical, logical, or foreign row identifier)

PL/SQL Boolean Data Types

The BOOLEAN data type stores logical values that are used in logical operations. The logical

values are the Boolean values TRUE and FALSE and the value NULL.

However, SQL has no data type equivalent to BOOLEAN. Therefore, Boolean values cannot be
used in:

 SQL statements

 Built-in SQL functions (such as TO_CHAR)

 PL/SQL functions invoked from SQL statements

PL/SQL Datetime and Interval Types

The DATE datatype to store fixed-length datetimes, which include the time of day in seconds

since midnight. Valid dates range from January 1, 4712 BC to December 31, 9999 AD.

The default date format is set by the Oracle initialization parameter NLS_DATE_FORMAT. For
example, the default might be 'DD-MON-YY', which includes a two-digit number for the day of
the month, an abbreviation of the month name, and the last two digits of the year, for example,
01-OCT-12.

Each DATE includes the century, year, month, day, hour, minute, and second. The following
table shows the valid values for each field:

TUTORIALSPOINT

Simply Easy Learning Page 20

Field Name Valid Datetime Values Valid Interval Values

YEAR
-4712 to 9999
(excluding year 0)

Any nonzero integer

MONTH 01 to 12 0 to 11

DAY

01 to 31 (limited by the
values of MONTH and
YEAR, according to the
rules of the calendar
for the locale)

Any nonzero integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND
00 to 59.9(n), where
9(n) is the precision of
time fractional seconds

0 to 59.9(n), where 9(n) is the precision of
interval fractional seconds

TIMEZONE_HOUR
-12 to 14 (range
accommodates daylight
savings time changes)

Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable

TIMEZONE_REGION
Found in the dynamic
performance view
V$TIMEZONE_NAMES

Not applicable

TIMEZONE_ABBR
Found in the dynamic
performance view
V$TIMEZONE_NAMES

Not applicable

PL/SQL Large Object (LOB) Data Types
Large object (LOB) data types refer large to data items such as text, graphic images, video clips,
and sound waveforms. LOB data types allow efficient, random, piecewise access to this data.
Following are the predefined PL/SQL LOB data types:

Data Type Description Size

BFILE
Used to store large binary
objects in operating system
files outside the database.

System-dependent. Cannot exceed 4 gigabytes
(GB).

BLOB
Used to store large binary
objects in the database.

8 to 128 terabytes (TB)

CLOB
Used to store large blocks of
character data in the
database.

8 to 128 TB

NCLOB
Used to store large blocks of
NCHAR data in the
database.

8 to 128 TB

TUTORIALSPOINT

Simply Easy Learning Page 21

PL/SQL User-Defined Subtypes
A subtype is a subset of another data type, which is called its base type. A subtype has the
same valid operations as its base type, but only a subset of its valid values.

PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL predefines
the subtypes CHARACTER and INTEGER as follows:

SUBTYPE CHARACTER IS CHAR;

SUBTYPE INTEGER IS NUMBER(38,0);

You can define and use your own subtypes. The following program illustrates defining and using
a user-defined subtype:

DECLARE

 SUBTYPE name IS char(20);

 SUBTYPE message IS varchar2(100);

 salutation name;

 greetings message;

BEGIN

 salutation := 'Reader ';

 greetings := 'Welcome to the World of PL/SQL';

 dbms_output.put_line('Hello ' || salutation || greetings);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Hello Reader Welcome to the World of PL/SQL

PL/SQL procedure successfully completed.

NULLs in PL/SQL
PL/SQL NULL values represent missing or unknown data and they are not an integer, a
character, or any other specific data type. Note that NULL is not the same as an empty data
string or the null character value '\0'. A null can be assigned but it cannot be equated with
anything, including itself.

TUTORIALSPOINT

Simply Easy Learning Page 22

Variables

This chapter describes the variables used:

Avariable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in PL/SQL has a specific data type, which determines the size and
layout of the variable's memory; the range of values that can be stored within that memory and
the set of operations that can be applied to the variable.

The name of a PL/SQL variable consists of a letter optionally followed by more letters, numerals,
dollar signs, underscores, and number signs and should not exceed 30 characters. By default,
variable names are not case-sensitive. You cannot use a reserved PL/SQL keyword as a
variable name.

PL/SQL programming language allows to define various types of variables,s which we will cover
in subsequent chapters like date time data types, records, collections, etc. For this chapter, let
us study only basic variable types.

Variable Declaration in PL/SQL
PL/SQL variables must be declared in the declaration section or in a package as a global
variable. When you declare a variable, PL/SQL allocates memory for the variable's value and the
storage location is identified by the variable name.

The syntax for declaring a variable is:

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Where, variable_name is a valid identifier in PL/SQL, datatype must be a valid PL/SQL data type
or any user defined data type which we already have discussed in last chapter. Some valid
variable declarations along with their definition are shown below:

sales number(10, 2);

pi CONSTANT double precision := 3.1415;

name varchar2(25);

address varchar2(100);

CHAPTER

5

TUTORIALSPOINT

Simply Easy Learning Page 23

When you provide a size, scale or precision limit with the data type, it is called a constrained
declaration. Constrained declarations require less memory than unconstrained declarations. For

example:

sales number(10, 2);

name varchar2(25);

address varchar2(100);

Initializing Variables in PL/SQL
Whenever you declare a variable, PL/SQL assigns it a default value of NULL. If you want to
initialize a variable with a value other than the NULL value, you can do so during the declaration,
using either of the following:

 The DEFAULT keyword

 The assignment operator

For example:

counter binary_integer := 0;

greetings varchar2(20) DEFAULT 'Have a Good Day';

You can also specify that a variable should not have a NULL value using the NOT
NULL constraint. If you use the NOT NULL constraint, you must explicitly assign an initial value

for that variable.

It is a good programming practice to initialize variables properly otherwise, sometimes program
would produce unexpected result. Try the following example which makes use of various types
of variables:

DECLARE

 a integer := 10;

 b integer := 20;

 c integer;

 f real;

BEGIN

 c := a + b;

 dbms_output.put_line('Value of c: ' || c);

 f := 70.0/3.0;

 dbms_output.put_line('Value of f: ' || f);

END;

/

When the above code is executed, it produces the following result:

Value of c: 30

Value of f: 23.333333333333333333

PL/SQL procedure successfully completed.

Variable Scope in PL/SQL
PL/SQL allows the nesting of Blocks, i.e., each program block may contain another inner block.
If a variable is declared within an inner block, it is not accessible to the outer block. However, if a

TUTORIALSPOINT

Simply Easy Learning Page 24

variable is declared and accessible to an outer Block, it is also accessible to all nested inner
Blocks. There are two types of variable scope:

 Local variables - variables declared in an inner block and not accessible to outer blocks.

 Global variables - variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variables in its simple form:

DECLARE

 -- Global variables

 num1 number := 95;

 num2 number := 85;

BEGIN

 dbms_output.put_line('Outer Variable num1: ' || num1);

 dbms_output.put_line('Outer Variable num2: ' || num2);

 DECLARE

 -- Local variables

 num1 number := 195;

 num2 number := 185;

 BEGIN

 dbms_output.put_line('Inner Variable num1: ' || num1);

 dbms_output.put_line('Inner Variable num2: ' || num2);

 END;

END;

/

When the above code is executed, it produces the following result:

Outer Variable num1: 95

Outer Variable num2: 85

Inner Variable num1: 195

Inner Variable num2: 185

PL/SQL procedure successfully completed.

Assigning SQL Query Results to PL/SQL Variables
You can use the SELECT INTO statement of SQL to assign values to PL/SQL variables. For
each item in the SELECT list, there must be a corresponding, type-compatible variable in the
INTO list. The following example illustrates the concept: Let us create a table named
CUSTOMERS:

(For SQL statements please look at the SQL tutorial)

CREATE TABLE CUSTOMERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25),

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID)

);

Table Created

Next, let us insert some values in the table:

http://www.tutorialspoint.com/sql/index.htm

TUTORIALSPOINT

Simply Easy Learning Page 25

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Komal', 22, 'MP', 4500.00);

The following program assigns values from the above table to PL/SQL variables using the
SELECT INTO clause of SQL:

DECLARE

 c_id customers.id%type := 1;

 c_name customers.name%type;

 c_addr customers.address%type;

 c_sal customers.salary%type;

BEGIN

 SELECT name, address, salary INTO c_name, c_addr, c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line

 ('Customer ' ||c_name || ' from ' || c_addr || ' earns ' || c_sal);

END;

/

When the above code is executed, it produces the following result:

Customer Ramesh from Ahmedabad earns 2000

PL/SQL procedure completed successfully

TUTORIALSPOINT

Simply Easy Learning Page 26

Constants

This chapter shows the usage of constants:

Aconstant holds a value that once declared, does not change in the program. A

constant declaration specifies its name, data type, and value, and allocates storage for it. The
declaration can also impose the NOT NULL constraint.

Declaring a Constant
A constant is declared using the CONSTANT keyword. It requires an initial value and does not
allow that value to be changed. For example:

PI CONSTANT NUMBER := 3.141592654;

DECLARE

 -- constant declaration

 pi constant number := 3.141592654;

 -- other declarations

 radius number(5,2);

 dia number(5,2);

 circumference number(7, 2);

 area number (10, 2);

BEGIN

 -- processing

 radius := 9.5;

 dia := radius * 2;

 circumference := 2.0 * pi * radius;

 area := pi * radius * radius;

 -- output

 dbms_output.put_line('Radius: ' || radius);

 dbms_output.put_line('Diameter: ' || dia);

 dbms_output.put_line('Circumference: ' || circumference);

 dbms_output.put_line('Area: ' || area);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Radius: 9.5

Diameter: 19

CHAPTER

6

TUTORIALSPOINT

Simply Easy Learning Page 27

Circumference: 59.69

Area: 283.53

Pl/SQL procedure successfully completed.

The PL/SQL Literals
A literal is an explicit numeric, character, string, or Boolean value not represented by an
identifier. For example, TRUE, 786, NULL, 'tutorialspoint' are all literals of type Boolean, number,
or string. PL/SQL, literals are case-sensitive. PL/SQL supports the following kinds of literals:

 Numeric Literals

 Character Literals

 String Literals

 BOOLEAN Literals

 Date and Time Literals

The following table provides examples from all these categories of literal values.

Literal Type Example:

Numeric Literals
050 78 -14 0 +32767
6.6667 0.0 -12.0 3.14159 +7800.00
6E5 1.0E-8 3.14159e0 -1E38 -9.5e-3

Character Literals 'A' '%' '9' ' ' 'z' '('

String Literals
'Hello, world!'
'Tutorials Point'
'19-NOV-12'

BOOLEAN Literals TRUE, FALSE, and NULL.

Date and Time Literals
DATE '1978-12-25';
TIMESTAMP '2012-10-29 12:01:01';

To embed single quotes within a string literal, place two single quotes next to each other as
shown below:

DECLARE

 message varchar2(20):= ''That''s tutorialspoint.com!'';

BEGIN

 dbms_output.put_line(message);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

That's tutorialspoint.com!

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 28

Operators

This chapter describes the different operators used under PL/SQL:

An operator is a symbol that tells the compiler to perform specific mathematical or

logical manipulation. PL/SQL language is rich in built-in operators and provides the following
types of operators:

 Arithmetic operators

 Relational operators

 Comparison operators

 Logical operators

 String operators

This tutorial will explain the arithmetic, relational, comparison and logical operators one by one.
The String operators will be discussed under the chapter: PL/SQL - Strings.

Arithmetic Operators
Following table shows all the arithmetic operators supported by PL/SQL. Assume variable A
holds 10 and variable B holds 5, then:

Operator Description Example

+ Adds two operands A + B will give 15

- Subtracts second operand from the first A - B will give 5

* Multiplies both operands A * B will give 50

/ Divides numerator by de-numerator A / B will give 2

** Exponentiation operator, raises one operand to the power of other
A ** B will give
100000

CHAPTER

7

TUTORIALSPOINT

Simply Easy Learning Page 29

Example:

BEGIN

 dbms_output.put_line(10 + 5);

 dbms_output.put_line(10 - 5);

 dbms_output.put_line(10 * 5);

 dbms_output.put_line(10 / 5);

 dbms_output.put_line(10 ** 5);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

15

5

50

2

100000

PL/SQL procedure successfully completed.

Relational Operators
Relational operators compare two expressions or values and return a Boolean result. Following
table shows all the relational operators supported by PL/SQL. Assume variable A holds 10 and
variable B holds 20, then:

Operator Description Example

=
Checks if the values of two operands are equal or not, if yes then
condition becomes true.

(A = B) is not
true.

!=
<>
~=

Checks if the values of two operands are equal or not, if values are
not equal then condition becomes true.

(A != B) is
true.

>
Checks if the value of left operand is greater than the value of right
operand, if yes then condition becomes true.

(A > B) is not
true.

<
Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than or equal to the
value of right operand, if yes then condition becomes true.

(A >= B) is not
true.

<=
Checks if the value of left operand is less than or equal to the value
of right operand, if yes then condition becomes true.

(A <= B) is
true.

Example:

DECLARE

 a number (2) := 21;

 b number (2) := 10;

BEGIN

 IF (a = b) then

 dbms_output.put_line('Line 1 - a is equal to b');

 ELSE

 dbms_output.put_line('Line 1 - a is not equal to b');

 END IF;

TUTORIALSPOINT

Simply Easy Learning Page 30

 IF (a < b) then

 dbms_output.put_line('Line 2 - a is less than b');

 ELSE

 dbms_output.put_line('Line 2 - a is not less than b');

 END IF;

 IF (a > b) THEN

 dbms_output.put_line('Line 3 - a is greater than b');

 ELSE

 dbms_output.put_line('Line 3 - a is not greater than b');

 END IF;

 -- Lets change value of a and b

 a := 5;

 b := 20;

 IF (a <= b) THEN

 dbms_output.put_line('Line 4 - a is either equal or less than b');

 END IF;

 IF (b >= a) THEN

 dbms_output.put_line('Line 5 - b is either equal or greater than a');

 END IF;

 IF (a <> b) THEN

 dbms_output.put_line('Line 6 - a is not equal to b');

 ELSE

 dbms_output.put_line('Line 6 - a is equal to b');

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either equal or less than b

Line 5 - b is either equal or greater than a

Line 6 - a is not equal to b

PL/SQL procedure successfully completed

Comparison Operators
Comparison operators are used for comparing one expression to another. The result is always
either TRUE, FALSE OR NULL.

Operator Description Example

LIKE
The LIKE operator compares a character, string, or CLOB
value to a pattern and returns TRUE if the value matches
the pattern and FALSE if it does not.

If 'Zara Ali' like 'Z%
A_i' returns a
Boolean true,
whereas, 'Nuha Ali'
like 'Z% A_i' returns a
Boolean false.

BETWEEN
The BETWEEN operator tests whether a value lies in a
specified range. x BETWEEN a AND b means that x >= a

If x = 10 then, x
between 5 and 20

TUTORIALSPOINT

Simply Easy Learning Page 31

and x <= b. returns true, x
between 5 and 10
returns true, but x
between 11 and 20
returns false.

IN
The IN operator tests set membership. x IN (set) means that
x is equal to any member of set.

If x = 'm' then, x in
('a', 'b', 'c') returns
boolean false but x in
('m', 'n', 'o') returns
Boolean true.

IS NULL
The IS NULL operator returns the BOOLEAN value TRUE if
its operand is NULL or FALSE if it is not NULL.
Comparisons involving NULL values always yield NULL.

If x = 'm', then 'x is
null' returns Boolean
false.

LIKE Operator:
This program tests the LIKE operator, though you will learn how to write procedure in PL/SQL,
but I'm going to use a small procedure() to show the functionality of LIKE operator:

DECLARE

PROCEDURE compare (value varchar2, pattern varchar2) is

BEGIN

 IF value LIKE pattern THEN

 dbms_output.put_line ('True');

 ELSE

 dbms_output.put_line ('False');

 END IF;

END;

BEGIN

 compare('Zara Ali', 'Z%A_i');

 compare('Nuha Ali', 'Z%A_i');

END;

/

When the above code is executed at SQL prompt, it produces the following result:

True

False

PL/SQL procedure successfully completed.

BETWEEN Operator:

The following program shows the usage of the BETWEEN operator:

DECLARE

 x number(2) := 10;

BEGIN

 IF (x between 5 and 20) THEN

 dbms_output.put_line('True');

 ELSE

 dbms_output.put_line('False');

 END IF;

 IF (x BETWEEN 5 AND 10) THEN

 dbms_output.put_line('True');

TUTORIALSPOINT

Simply Easy Learning Page 32

 ELSE

 dbms_output.put_line('False');

 END IF;

 IF (x BETWEEN 11 AND 20) THEN

 dbms_output.put_line('True');

 ELSE

 dbms_output.put_line('False');

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

True

True

False

PL/SQL procedure successfully completed.

IN and IS NULL Operators:

The following program shows the usage of IN and IS NULL operators:

DECLARE

 letter varchar2(1) := 'm';

BEGIN

 IF (letter in ('a', 'b', 'c')) THEN

 dbms_output.put_line('True');

 ELSE

 dbms_output.put_line('False');

 END IF;

 IF (letter in ('m', 'n', 'o')) THEN

 dbms_output.put_line('True');

 ELSE

 dbms_output.put_line('False');

 END IF;

 IF (letter is null) THEN

 dbms_output.put_line('True');

 ELSE

 dbms_output.put_line('False');

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

False

True

False

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 33

Logical Operators
Following table shows the Logical operators supported by PL/SQL. All these operators work on
Boolean operands and produces Boolean results. Assume variable A holds true and variable B
holds false, then:

Operator Description Example

and
Called logical AND operator. If both the operands are true then
condition becomes true.

(A and B) is
false.

or
Called logical OR Operator. If any of the two operands is true then
condition becomes true.

(A or B) is true.

not
Called logical NOT Operator. Used to reverse the logical state of its
operand. If a condition is true then Logical NOT operator will make
it false.

not (A and B) is
true.

Example:

DECLARE

 a boolean := true;

 b boolean := false;

BEGIN

 IF (a AND b) THEN

 dbms_output.put_line('Line 1 - Condition is true');

 END IF;

 IF (a OR b) THEN

 dbms_output.put_line('Line 2 - Condition is true');

 END IF;

 IF (NOT a) THEN

 dbms_output.put_line('Line 3 - a is not true');

 ELSE

 dbms_output.put_line('Line 3 - a is true');

 END IF;

 IF (NOT b) THEN

 dbms_output.put_line('Line 4 - b is not true');

 ELSE

 dbms_output.put_line('Line 4 - b is true');

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Line 2 - Condition is true

Line 3 - a is true

Line 4 - b is not true

PL/SQL procedure successfully completed.

PL/SQL Operator Precedence
Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator:

TUTORIALSPOINT

Simply Easy Learning Page 34

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Operator Operation

** Exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=,
IS NULL, LIKE, BETWEEN, IN

Comparison

NOT logical negation

AND Conjunction

OR Inclusion

Example:

Try the following example to understand the operator precedence available in PL/SQL:

DECLARE

 a number(2) := 20;

 b number(2) := 10;

 c number(2) := 15;

 d number(2) := 5;

 e number(2) ;

BEGIN

 e := (a + b) * c / d; -- (30 * 15) / 5

 dbms_output.put_line('Value of (a + b) * c / d is : '|| e);

 e := ((a + b) * c) / d; -- (30 * 15) / 5

 dbms_output.put_line('Value of ((a + b) * c) / d is : ' || e);

 e := (a + b) * (c / d); -- (30) * (15/5)

 dbms_output.put_line('Value of (a + b) * (c / d) is : '|| e);

 e := a + (b * c) / d; -- 20 + (150/5)

 dbms_output.put_line('Value of a + (b * c) / d is : ' || e);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 35

Conditions

This chapter describes the Decision Making Structure:

Decision-making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be executed if
the condition is determined to be true, and optionally, other statements to be executed if the
condition is determined to be false.

Following is the general from of a typical conditional (i.e., decision making) structure found in
most of the programming languages:

PL/SQL programming language provides following types of decision-making statements. Click
the following links to check their detail.

CHAPTER

8

TUTORIALSPOINT

Simply Easy Learning Page 36

Statement Description

IF - THEN statement

The IF statement associates a condition with a sequence of
statements enclosed by the keywords THEN and END IF. If

the condition is true, the statements get executed and if the
condition is false or NULL then the IF statement does nothing.

IF-THEN-ELSE statement

IF statement adds the keyword ELSE followed by an

alternative sequence of statement. If the condition is false or
NULL , then only the alternative sequence of statements get
executed. It ensures that either of the sequence of statements
is executed.

IF-THEN-ELSIF statement It allows you to choose between several alternatives.

Case statement

Like the IF statement, the CASE statement selects one

sequence of statements to execute. However, to select the
sequence, the CASE statement uses a selector rather than
multiple Boolean expressions. A selector is an expression
whose value is used to select one of several alternatives.

Searched CASE statement

The searched CASE statement has no selector, and it's

WHEN clauses contain search conditions that yield Boolean
values.

nested IF-THEN-ELSE
You can use one IF-THEN or IF-THEN-ELSIF statement
inside another IF-THEN or IF-THEN-ELSIF statement(s).

IF - THEN statement

It is the simplest form of IF control statement, frequently used in decision making and changing

the control flow of the program execution.
The IF statement associates a condition with a sequence of statements enclosed by the
keywords THEN and END IF. If the condition is TRUE, the statements get executed, and if the
condition is FALSE or NULL, then the IF statement does nothing.

Syntax:

Syntax for IF-THEN statement is:

IF condition THEN

 S;

END IF;

Where condition is a Boolean or relational condition and S is a simple or compound statement.
Example of an IF-THEN statement is:

IF (a <= 20) THEN

 c:= c+1;

END IF;

If the Boolean expression condition evaluates to true, then the block of code inside the if
statement will be executed. If Boolean expression evaluates to false, then the first set of code
after the end of the if statement (after the closing end if) will be executed.

Flow Diagram:

TUTORIALSPOINT

Simply Easy Learning Page 37

Example 1:

Let us try a complete example that would illustrate the concept:

DECLARE

 a number(2) := 10;

BEGIN

 a:= 10;

 -- check the boolean condition using if statement

 IF(a < 20) THEN

 -- if condition is true then print the following

 dbms_output.put_line('a is less than 20 ');

 END IF;

 dbms_output.put_line('value of a is : ' || a);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

a is less than 20

value of a is : 10

PL/SQL procedure successfully completed.

Example 2:
Consider we have a table and few records in the table as we had created in PL/SQL Variable
Types

DECLARE

 c_id customers.id%type := 1;

 c_sal customers.salary%type;

BEGIN

http://www.tutorialspoint.com/plsql/plsql_variable_types.htm
http://www.tutorialspoint.com/plsql/plsql_variable_types.htm

TUTORIALSPOINT

Simply Easy Learning Page 38

 SELECT salary

 INTO c_sal

 FROM customers

 WHERE id = c_id;

 IF (c_sal <= 2000) THEN

 UPDATE customers

 SET salary = salary + 1000

 WHERE id = c_id;

 dbms_output.put_line ('Salary updated');

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Salary updated

PL/SQL procedure successfully completed.

IF-THEN-ELSE statement

A sequence of IF-THEN statements can be followed by an optional sequence
of ELSE statements, which execute when the condition is FALSE.

Syntax:

Syntax for the IF-THEN-ELSE statement is:

IF condition THEN

 S1;

ELSE

 S2;

END IF;

Where, S1 and S2 are different sequence of statements. In the IF-THEN-ELSE statements,
when the test condition is TRUE, the statement S1 is executed and S2 is skipped; when the
test condition is FALSE, then S1 is bypassed and statement S2 is executed. For example:

IF color = red THEN

 dbms_output.put_line('You have chosen a red car')

ELSE

 dbms_output.put_line('Please choose a color for your car');

END IF;

If the Boolean expression condition evaluates to true, then the if-then block of code will be
executed, otherwise the else block of code will be executed.

Flow Diagram:

TUTORIALSPOINT

Simply Easy Learning Page 39

Example:

Let us try a complete example that would illustrate the concept:

DECLARE

 a number(3) := 100;

BEGIN

 -- check the boolean condition using if statement

 IF(a < 20) THEN

 -- if condition is true then print the following

 dbms_output.put_line('a is less than 20 ');

 ELSE

 dbms_output.put_line('a is not less than 20 ');

 END IF;

 dbms_output.put_line('value of a is : ' || a);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

a is not less than 20

value of a is : 100

PL/SQL procedure successfully completed.

IF-THEN-ELSIF statement

The IF-THEN-ELSIF statement allows you to choose between several alternatives. An IF-
THEN statement can be followed by an optional ELSIF...ELSE statement. The ELSIF clause lets

you add additional conditions.
When using IF-THEN-ELSIF statements, there are few points to keep in mind.

 It's ELSIF, not ELSEIF

TUTORIALSPOINT

Simply Easy Learning Page 40

 An IF-THEN statement can have zero or one ELSE's and it must come after any ELSIF's.

 An IF-THEN statement can have zero to many ELSIF's and they must come before the

 ELSE.

 Once an ELSIF succeeds, none of the remaining ELSIF's or ELSE's will be tested.

Syntax:

The syntax of an IF-THEN-ELSIF Statement in PL/SQL programming language is:

IF(boolean_expression 1)THEN

 S1; -- Executes when the boolean expression 1 is true

ELSIF(boolean_expression 2) THEN

 S2; -- Executes when the boolean expression 2 is true

ELSIF(boolean_expression 3) THEN

 S3; -- Executes when the boolean expression 3 is true

ELSE

 S4; -- executes when the none of the above condition is true

END IF;

Example:

DECLARE

 a number(3) := 100;

BEGIN

 IF (a = 10) THEN

 dbms_output.put_line('Value of a is 10');

 ELSIF (a = 20) THEN

 dbms_output.put_line('Value of a is 20');

 ELSIF (a = 30) THEN

 dbms_output.put_line('Value of a is 30');

 ELSE

 dbms_output.put_line('None of the values is matching');

 END IF;

 dbms_output.put_line('Exact value of a is: '|| a);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

None of the values is matching

Exact value of a is: 100

PL/SQL procedure successfully completed.

Case statement
Like the IF statement, the CASE statement selects one sequence of statements to execute.
However, to select the sequence, the CASE statement uses a selector rather than multiple

Boolean expressions. A selector is an expression, whose value is used to select one of several
alternatives.

Syntax:

The syntax for case statement in PL/SQL is:

TUTORIALSPOINT

Simply Easy Learning Page 41

CASE selector

 WHEN 'value1' THEN S1;

 WHEN 'value2' THEN S2;

 WHEN 'value3' THEN S3;

 ...

 ELSE Sn; -- default case

END CASE;

Flow Diagram:

Example:

DECLARE

 grade char(1) := 'A';

BEGIN

 CASE grade

 when 'A' then dbms_output.put_line('Excellent');

 when 'B' then dbms_output.put_line('Very good');

 when 'C' then dbms_output.put_line('Well done');

 when 'D' then dbms_output.put_line('You passed');

 when 'F' then dbms_output.put_line('Better try again');

 else dbms_output.put_line('No such grade');

 END CASE;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

TUTORIALSPOINT

Simply Easy Learning Page 42

Excellent

PL/SQL procedure successfully completed.

Searched CASE statement

The searched CASE statement has no selector and its WHEN clauses contain search conditions

that give Boolean values.

Syntax:

The syntax for searched case statement in PL/SQL is:

CASE

 WHEN selector = 'value1' THEN S1;

 WHEN selector = 'value2' THEN S2;

 WHEN selector = 'value3' THEN S3;

 ...

 ELSE Sn; -- default case

END CASE;

Flow Diagram:

Example:

DECLARE

 grade char(1) := 'B';

BEGIN

 case

 when grade = 'A' then dbms_output.put_line('Excellent');

 when grade = 'B' then dbms_output.put_line('Very good');

 when grade = 'C' then dbms_output.put_line('Well done');

 when grade = 'D' then dbms_output.put_line('You passed');

 when grade = 'F' then dbms_output.put_line('Better try again');

 else dbms_output.put_line('No such grade');

 end case;

TUTORIALSPOINT

Simply Easy Learning Page 43

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Very good

PL/SQL procedure successfully completed.

Nested IF-THEN-ELSE

It is always legal in PL/SQL programming to nest IF-ELSE statements, which means you can
use one IF or ELSE IF statement inside another IF or ELSE IF statement(s).

Syntax:

IF(boolean_expression 1)THEN

 -- executes when the boolean expression 1 is true

 IF(boolean_expression 2) THEN

 -- executes when the boolean expression 2 is true

 sequence-of-statements;

 END IF;

ELSE

 -- executes when the boolean expression 1 is not true

 else-statements;

END IF;

Example:

DECLARE

 a number(3) := 100;

 b number(3) := 200;

BEGIN

 -- check the boolean condition

 IF(a = 100) THEN

 -- if condition is true then check the following

 IF(b = 200) THEN

 -- if condition is true then print the following

 dbms_output.put_line('Value of a is 100 and b is 200');

 END IF;

 END IF;

 dbms_output.put_line('Exact value of a is : ' || a);

 dbms_output.put_line('Exact value of b is : ' || b);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 44

Loops

This chapter describes the various loops used under PL/SQL:

There may be a situation when you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function is
executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages:

PL/SQL provides the following types of loop to handle the looping requirements. Click the
following links to check their detail.

CHAPTER

9

TUTORIALSPOINT

Simply Easy Learning Page 45

Loop Type Description

PL/SQL Basic LOOP

In this loop structure, sequence of statements is enclosed between
the LOOP and END LOOP statements. At each iteration, the
sequence of statements is executed and then control resumes at the
top of the loop.

PL/SQL WHILE LOOP
Repeats a statement or group of statements until a given condition is
true. It tests the condition before executing the loop body.

PL/SQL FOR LOOP
Execute a sequence of statements multiple times and abbreviates
the code that manages the loop variable.

Nested loops in PL/SQL
You can use one or more loop inside any another basic loop, while or
for loop.

PL/SQL Basic LOOP

Basic loop structure encloses sequence of statements in between the LOOP and END LOOP

statements. With each iteration, the sequence of statements is executed and then control
resumes at the top of the loop.

Syntax:
The syntax of a basic loop in PL/SQL programming language is:

LOOP

 Sequence of statements;

END LOOP;

Here, sequence of statement(s) may be a single statement or a block of statements. An EXIT
statement or an EXIT WHEN statement is required to break the loop.

Example:

DECLARE

 x number := 10;

BEGIN

 LOOP

 dbms_output.put_line(x);

 x := x + 10;

 IF x > 50 THEN

 exit;

 END IF;

 END LOOP;

 -- after exit, control resumes here

 dbms_output.put_line('After Exit x is: ' || x);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

10

20

30

40

50

After Exit x is: 60

TUTORIALSPOINT

Simply Easy Learning Page 46

PL/SQL procedure successfully completed.

You can use the EXIT WHEN statement instead of the EXIT statement:

DECLARE

 x number := 10;

BEGIN

 LOOP

 dbms_output.put_line(x);

 x := x + 10;

 exit WHEN x > 50;

 END LOOP;

 -- after exit, control resumes here

 dbms_output.put_line('After Exit x is: ' || x);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

10

20

30

40

50

After Exit x is: 60

PL/SQL procedure successfully completed.

PL/SQL WHILE LOOP

A WHILE LOOP statement in PL/SQL programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax:

WHILE condition LOOP

 sequence_of_statements

END LOOP;

Example:

DECLARE

 a number(2) := 10;

BEGIN

 WHILE a < 20 LOOP

 dbms_output.put_line('value of a: ' || a);

 a := a + 1;

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 10

TUTORIALSPOINT

Simply Easy Learning Page 47

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

PL/SQL procedure successfully completed.

PL/SQL FOR LOOP

A FOR LOOP is a repetition control structure that allows you to efficiently write a loop that needs

to execute a specific number of times.

Syntax:

FOR counter IN initial_value .. final_value LOOP

 sequence_of_statements;

END LOOP;

Here is the flow of control in a for loop:

 The initial step is executed first, and only once. This step allows you to declare and initialize
any loop control variables.

 Next, the condition ,i.e., initial_value .. final_value is evaluated. If it is TRUE, the body of the

loop is executed. If it is FALSE, the body of the loop does not execute and flow of control
jumps to the next statement just after the for loop.

 After the body of the for loop executes, the value of the counter variable is increased or

decreased.

 The condition is now evaluated again. If it is TRUE, the loop executes and the process
repeats itself (body of loop, then increment step, and then again condition). After the
condition becomes FALSE, the FOR-LOOP terminates.

Following are some special characteristics of PL/SQL for loop:

 The initial_value and final_value of the loop variable or counter can be literals, variables, or
expressions but must evaluate to numbers. Otherwise, PL/SQL raises the predefined
exception VALUE_ERROR.

 The initial_value need not to be 1; however, the loop counter increment (or decrement)
must be 1.

 PL/SQL allows determine the loop range dynamically at run time.

Example:

DECLARE

 a number(2);

BEGIN

TUTORIALSPOINT

Simply Easy Learning Page 48

 FOR a in 10 .. 20 LOOP

 dbms_output.put_line('value of a: ' || a);

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

value of a: 20

PL/SQL procedure successfully completed.

Reverse FOR LOOP Statement
By default, iteration proceeds from the initial value to the final value, generally upward from the
lower bound to the higher bound. You can reverse this order by using the REVERSE keyword. In

such case, iteration proceeds the other way. After each iteration, the loop counter is
decremented.

However, you must write the range bounds in ascending (not descending) order. The following
program illustrates this:

DECLARE

 a number(2) ;

BEGIN

 FOR a IN REVERSE 10 .. 20 LOOP

 dbms_output.put_line('value of a: ' || a);

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 20

value of a: 19

value of a: 18

value of a: 17

value of a: 16

value of a: 15

value of a: 14

value of a: 13

value of a: 12

value of a: 11

value of a: 10

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 49

Nested loops in PL/SQL

PL/SQL allows using one loop inside another loop. Following section shows few examples to
illustrate the concept.

The syntax for a nested basic LOOP statement in PL/SQL is as follows:

LOOP

 Sequence of statements1

 LOOP

 Sequence of statements2

 END LOOP;

END LOOP;

The syntax for a nested FOR LOOP statement in PL/SQL is as follows:

FOR counter1 IN initial_value1 .. final_value1 LOOP

 sequence_of_statements1

 FOR counter2 IN initial_value2 .. final_value2 LOOP

 sequence_of_statements2

 END LOOP;

END LOOP;

The syntax for a nested WHILE LOOP statement in Pascal is as follows:

WHILE condition1 LOOP

 sequence_of_statements1

 WHILE condition2 LOOP

 sequence_of_statements2

 END LOOP;

END LOOP;

Example:

The following program uses a nested basic loop to find the prime numbers from 2 to 100:

DECLARE

 i number(3);

 j number(3);

BEGIN

 i := 2;

 LOOP

 j:= 2;

 LOOP

 exit WHEN ((mod(i, j) = 0) or (j = i));

 j := j +1;

 END LOOP;

 IF (j = i) THEN

 dbms_output.put_line(i || ' is prime');

 END IF;

 i := i + 1;

 exit WHEN i = 50;

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

TUTORIALSPOINT

Simply Easy Learning Page 50

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

PL/SQL procedure successfully completed.

Labeling a PL/SQL Loop
PL/SQL loops can be labeled. The label should be enclosed by double angle brackets (<< and
>>) and appear at the beginning of the LOOP statement. The label name can also appear at the
end of the LOOP statement. You may use the label in the EXIT statement to exit from the loop.

The following program illustrates the concept:

DECLARE

 i number(1);

 j number(1);

BEGIN

 << outer_loop >>

 FOR i IN 1..3 LOOP

 << inner_loop >>

 FOR j IN 1..3 LOOP

 dbms_output.put_line('i is: '|| i || ' and j is: ' || j);

 END loop inner_loop;

 END loop outer_loop;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

i is: 1 and j is: 1

i is: 1 and j is: 2

i is: 1 and j is: 3

i is: 2 and j is: 1

i is: 2 and j is: 2

i is: 2 and j is: 3

i is: 3 and j is: 1

i is: 3 and j is: 2

i is: 3 and j is: 3

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 51

The Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

PL/SQL supports the following control statements. Labeling loops also helps in taking the control
outside a loop. Click the following links to check their detail.

Control Statement Description

EXIT statement
The Exit statement completes the loop and control passes to the
statement immediately after END LOOP

CONTINUE statement
Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

GOTO statement
Transfers control to the labeled statement. Though it is not advised to
use GOTO statement in your program.

EXIT statement

The EXIT statement in PL/SQL programming language has following two usages:

 When the EXIT statement is encountered inside a loop, the loop is immediately terminated

 and program control resumes at the next statement following the loop.

 If you are using nested loops (i.e. one loop inside another loop), the EXIT statement will stop
the execution of the innermost loop and start executing the next line of code after the block.

Syntax:

The syntax for an EXIT statement in PL/SQL is as follows:

EXIT;

Flow Diagram:

TUTORIALSPOINT

Simply Easy Learning Page 52

Example:

DECLARE

 a number(2) := 10;

BEGIN

 -- while loop execution

 WHILE a < 20 LOOP

 dbms_output.put_line ('value of a: ' || a);

 a := a + 1;

 IF a > 15 THEN

 -- terminate the loop using the exit statement

 EXIT;

 END IF;

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

PL/SQL procedure successfully completed.

The EXIT WHEN Statement

The EXIT-WHEN statement allows the condition in the WHEN clause to be evaluated. If the

condition is true, the loop completes and control passes to the statement immediately after END
LOOP.

Following are two important aspects for the EXIT WHEN statement:

 Until the condition is true, the EXIT-WHEN statement acts like a NULL statement, except for
evaluating the condition, and does not terminate the loop.

 A statement inside the loop must change the value of the condition.

Syntax:

The syntax for an EXIT WHEN statement in PL/SQL is as follows:

EXIT WHEN condition;

The EXIT WHEN statement replaces a conditional statement like if-then used with the EXIT

statement.

Example:

DECLARE

 a number(2) := 10;

BEGIN

 -- while loop execution

 WHILE a < 20 LOOP

TUTORIALSPOINT

Simply Easy Learning Page 53

 dbms_output.put_line ('value of a: ' || a);

 a := a + 1;

 -- terminate the loop using the exit when statement

 EXIT WHEN a > 15;

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

PL/SQL procedure successfully completed.

CONTINUE statement

The CONTINUE statement causes the loop to skip the remainder of its body and immediately

retest its condition prior to reiterating. In other words, it forces the next iteration of the loop to
take place, skipping any code in between.

Syntax:

The syntax for a CONTINUE statement is as follows:

CONTINUE;

Flow Diagram:

TUTORIALSPOINT

Simply Easy Learning Page 54

Example:

DECLARE

 a number(2) := 10;

BEGIN

 -- while loop execution

 WHILE a < 20 LOOP

 dbms_output.put_line ('value of a: ' || a);

 a := a + 1;

 IF a = 15 THEN

 -- skip the loop using the CONTINUE statement

 a := a + 1;

 CONTINUE;

 END IF;

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

PL/SQL procedure successfully completed.

GOTO statement

A GOTO statement in PL/SQL programming language provides an unconditional jump from the

GOTO to a labeled statement in the same subprogram.

NOTE: Use of GOTO statement is highly discouraged in any programming language because it

makes difficult to trace the control flow of a program, making the program hard to understand
and hard to modify. Any program that uses a GOTO can be rewritten so that it doesn't need the
GOTO.

Syntax:

The syntax for a GOTO statement in PL/SQL is as follows:

GOTO label;

..

..

<< label >>

statement;

TUTORIALSPOINT

Simply Easy Learning Page 55

Flow Diagram:

Example:

DECLARE

 a number(2) := 10;

BEGIN

 <<loopstart>>

 -- while loop execution

 WHILE a < 20 LOOP

 dbms_output.put_line ('value of a: ' || a);

 a := a + 1;

 IF a = 15 THEN

 a := a + 1;

 GOTO loopstart;

 END IF;

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 56

Restrictions with GOTO Statement

GOTO Statement in PL/SQL imposes the following restrictions:

 A GOTO statement cannot branch into an IF statement, CASE statement, LOOP statement
or sub-block.

 A GOTO statement cannot branch from one IF statement clause to another or from one
CASE statement WHEN clause to another.

 A GOTO statement cannot branch from an outer block into a sub-block (that is, an inner
BEGIN-END block).

 A GOTO statement cannot branch out of a subprogram. To end a subprogram early, either
use the RETURN statement or have GOTO branch to a place right before the end of the
subprogram.

 A GOTO statement cannot branch from an exception handler back into the current BEGIN-
END block. However, a GOTO statement can branch from an exception handler into an
enclosing block.

TUTORIALSPOINT

Simply Easy Learning Page 57

Strings

This chapter describes the concepts under strings:

The string in PL/SQL is actually a sequence of characters with an optional size

specification. The characters could be numeric, letters, blank, special characters or a
combination of all. PL/SQL offers three kinds of strings:

 Fixed-length strings: In such strings, programmers specify the length while declaring the

string. The string is right-padded with spaces to the length so specified.

 Variable-length strings: In such strings, a maximum length up to 32,767, for the string is

specified and no padding takes place.

 Character large objects (CLOBs): These are variable-length strings that can be up to 128

terabytes.

PL/SQL strings could be either variables or literals. A string literal is enclosed within quotation
marks. For example,

'This is a string literal.' Or 'hello world'

To include a single quote inside a string literal, you need to type two single quotes next to one
another, like:

'this isn''t what it looks like'

Declaring String Variables
Oracle database provides numerous string datatypes , like, CHAR, NCHAR, VARCHAR2,
NVARCHAR2, CLOB, and NCLOB. The datatypes prefixed with an 'N' are 'national character
set' datatypes, that store Unicode character data.

If you need to declare a variable-length string, you must provide the maximum length of that
string. For example, the VARCHAR2 data type. The following example illustrates declaring and
using some string variables:

DECLARE

 name varchar2(20);

 company varchar2(30);

CHAPTER

10

TUTORIALSPOINT

Simply Easy Learning Page 58

 introduction clob;

 choice char(1);

BEGIN

 name := 'John Smith';

 company := 'Infotech';

 introduction := ' Hello! I''m John Smith from Infotech.';

 choice := 'y';

 IF choice = 'y' THEN

 dbms_output.put_line(name);

 dbms_output.put_line(company);

 dbms_output.put_line(introduction);

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

John Smith

Infotech Corporation

Hello! I'm John Smith from Infotech.

PL/SQL procedure successfully completed

To declare a fixed-length string, use the CHAR datatype. Here you do not have to specify a
maximum length for a fixed-length variable. If you leave off the length constraint, Oracle
Database automatically uses a maximum length required. So following two declarations below
are identical:

 red_flag CHAR(1) := 'Y';

 red_flag CHAR := 'Y';

PL/SQL String Functions and Operators
PL/SQL offers the concatenation operator (||) for joining two strings. The following table provides
the string functions provided by PL/SQL:

S.N. Function & Purpose

1
ASCII(x);

Returns the ASCII value of the character x.

2
CHR(x);

Returns the character with the ASCII value of x.

3
CONCAT(x, y);

Concatenates the strings x and y and return the appended string.

4
INITCAP(x);

Converts the initial letter of each word in x to uppercase and returns that string.

5
INSTR(x, find_string [, start] [, occurrence]);

Searches for find_string in x and returns the position at which it occurs.

6
INSTRB(x);

Returns the location of a string within another string, but returns the value in bytes.

7
LENGTH(x);

Returns the number of characters in x.

TUTORIALSPOINT

Simply Easy Learning Page 59

8
LENGTHB(x);

Returns the length of a character string in bytes for single byte character set.

9
LOWER(x);

Converts the letters in x to lowercase and returns that string.

10
LPAD(x, width [, pad_string]) ;

Pads x with spaces to left, to bring the total length of the string up to width characters.

11
LTRIM(x [, trim_string]);

Trims characters from the left of x.

12

NANVL(x, value);

Returns value if x matches the NaN special value (not a number), otherwise x is
returned.

13

NLS_INITCAP(x);

Same as the INITCAP function except that it can use a different sort method as specified
by NLSSORT.

14

NLS_LOWER(x) ;

Same as the LOWER function except that it can use a different sort method as specified
by NLSSORT.

15

NLS_UPPER(x);

Same as the UPPER function except that it can use a different sort method as specified
by NLSSORT.

16

NLSSORT(x);

Changes the method of sorting the characters. Must be specified before any NLS
function; otherwise, the default sort will be used.

17
NVL(x, value);

Returns value if x is null; otherwise, x is returned.

18
NVL2(x, value1, value2);

Returns value1 if x is not null; if x is null, value2 is returned.

19
REPLACE(x, search_string, replace_string);

Searches x for search_string and replaces it with replace_string.

20
RPAD(x, width [, pad_string]);

Pads x to the right.

21
RTRIM(x [, trim_string]);

Trims x from the right.

22
SOUNDEX(x) ;

Returns a string containing the phonetic representation of x.

23

SUBSTR(x, start [, length]);

Returns a substring of x that begins at the position specified by start. An optional length
for the substring may be supplied.

24

SUBSTRB(x);

Same as SUBSTR except the parameters are expressed in bytes instead of characters
for the single-byte character systems.

25
TRIM([trim_char FROM) x);

Trims characters from the left and right of x.

26
UPPER(x);

Converts the letters in x to uppercase and returns that string.

TUTORIALSPOINT

Simply Easy Learning Page 60

The following examples illustrate some of the above-mentioned functions and their use:

Example 1
DECLARE

 greetings varchar2(11) := 'hello world';

BEGIN

 dbms_output.put_line(UPPER(greetings));

 dbms_output.put_line(LOWER(greetings));

 dbms_output.put_line(INITCAP(greetings));

 /* retrieve the first character in the string */

 dbms_output.put_line (SUBSTR (greetings, 1, 1));

 /* retrieve the last character in the string */

 dbms_output.put_line (SUBSTR (greetings, -1, 1));

 /* retrieve five characters,

 starting from the seventh position. */

 dbms_output.put_line (SUBSTR (greetings, 7, 5));

 /* retrieve the remainder of the string,

 starting from the second position. */

 dbms_output.put_line (SUBSTR (greetings, 2));

 /* find the location of the first "e" */

 dbms_output.put_line (INSTR (greetings, 'e'));

END;

/

When the above code is executed at SQL prompt, it produces the following result:

HELLO WORLD

hello world

Hello World

h

d

World

ello World

2

PL/SQL procedure successfully completed.

Example 2
DECLARE

 greetings varchar2(30) := '......Hello World.....';

BEGIN

 dbms_output.put_line(RTRIM(greetings,'.'));

 dbms_output.put_line(LTRIM(greetings, '.'));

 dbms_output.put_line(TRIM('.' from greetings));

END;

/

When the above code is executed at SQL prompt, it produces the following result:

TUTORIALSPOINT

Simply Easy Learning Page 61

......Hello World

Hello World.....

Hello World

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 62

Arrays

This chapter describes concepts under Arrays:

PL/SQL programming language provides a data structure called the VARRAY, which can

store a fixed-size sequential collection of elements of the same type. A varray is used to store an
ordered collection of data, but it is often more useful to think of an array as a collection of
variables of the same type.

All varrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

An array is a part of collection type data and it stands for variable-size arrays. We will study
other collection types in a later chapter 'PL/SQL Collections'.

Each element in a varray has an index associated with it. It also has a maximum size that can be
changed dynamically.

Creating a Varray Type
A varray type is created with the CREATE TYPE statement. You must specify the maximum size
and the type of elements stored in the varray.

The basic syntax for creating a VRRAY type at the schema level is:

CREATE OR REPLACE TYPE varray_type_name IS VARRAY(n) of <element_type>

Where,

 varray_type_name is a valid attribute name,

CHAPTER

11

TUTORIALSPOINT

Simply Easy Learning Page 63

 n is the number of elements (maximum) in the varray,

 element_type is the data type of the elements of the array.

Maximum size of a varray can be changed using the ALTER TYPE statement.

For example,

CREATE Or REPLACE TYPE namearray AS VARRAY(3) OF VARCHAR2(10);

/

Type created.

The basic syntax for creating a VRRAY type within a PL/SQL block is:

TYPE varray_type_name IS VARRAY(n) of <element_type>

For example:

TYPE namearray IS VARRAY(5) OF VARCHAR2(10);

Type grades IS VARRAY(5) OF INTEGER;

Example 1
The following program illustrates using varrays:

DECLARE

 type namesarray IS VARRAY(5) OF VARCHAR2(10);

 type grades IS VARRAY(5) OF INTEGER;

 names namesarray;

 marks grades;

 total integer;

BEGIN

 names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line('Total '|| total || ' Students');

 FOR i in 1 .. total LOOP

 dbms_output.put_line('Student: ' || names(i) || '

 Marks: ' || marks(i));

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Student: Kavita Marks: 98

Student: Pritam Marks: 97

Student: Ayan Marks: 78

Student: Rishav Marks: 87

Student: Aziz Marks: 92

PL/SQL procedure successfully completed.

Please note:

 In oracle environment, the starting index for varrays is always 1.

TUTORIALSPOINT

Simply Easy Learning Page 64

 You can initialize the varray elements using the constructor method of the varray type,
which has the same name as the varray.

 Varrays are one-dimensional arrays.

 A varray is automatically NULL when it is declared and must be initialized before its
elements can be referenced.

.Example 2
Elements of a varray could also be a %ROWTYPE of any database table or %TYPE of any
database table field. The following example illustrates the concept:

We will use the CUSTOMERS table stored in our database as:

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

Following example makes use of cursor, which you will study in detail in a separate chapter.

DECLARE

 CURSOR c_customers is

 SELECT name FROM customers;

 type c_list is varray (6) of customers.name%type;

 name_list c_list := c_list();

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter + 1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer('||counter

||'):'||name_list(counter));

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 65

Procedures

This chapter describes the procedures under PL/SQL:

A subprogram is a program unit/module that performs a particular task. These

subprograms are combined to form larger programs. This is basically called the 'Modular design'.
A subprogram can be invoked by another subprogram or program which is called the calling
program.

A subprogram can be created:

 At schema level

 Inside a package

 Inside a PL/SQL block

A schema level subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or CREATE FUNCTION statement. It is stored in the database and can be
deleted with the DROP PROCEDURE or DROP FUNCTION statement.
A subprogram created inside a package is a packaged subprogram. It is stored in the database

and can be deleted only when the package is deleted with the DROP PACKAGE statement. We
will discuss packages in the chapter 'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.
PL/SQL provides two kinds of subprograms:

 Functions: these subprograms return a single value, mainly used to compute and return a

value.

 Procedures: these subprograms do not return a value directly, mainly used to perform an

action.
This chapter is going to cover important aspects of a PL/SQL procedure and we will
cover PL/SQL function in next chapter.

Parts of a PL/SQL Subprogram
Each PL/SQL subprogram has a name, and may have a parameter list. Like anonymous PL/SQL
blocks and, the named blocks a subprograms will also have following three parts:

CHAPTER

12

TUTORIALSPOINT

Simply Easy Learning Page 66

S.N. Parts & Description

1

Declarative Part

It is an optional part. However, the declarative part for a subprogram does not start with the
DECLARE keyword. It contains declarations of types, cursors, constants, variables,
exceptions, and nested subprograms. These items are local to the subprogram and cease
to exist when the subprogram completes execution.

2
Executable Part

This is a mandatory part and contains statements that perform the designated action.

3
Exception-handling

This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure
A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

 < procedure_body >

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows modifying an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN
represents that value will be passed from outside and OUT represents that this parameter
will be used to return a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example:
The following example creates a simple procedure that displays the string 'Hello World!' on the
screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

When above code is executed using SQL prompt, it will produce the following result:

Procedure created.

TUTORIALSPOINT

Simply Easy Learning Page 67

Executing a Standalone Procedure
A standalone procedure can be called in two ways:

 Using the EXECUTE keyword

 Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as:

EXECUTE greetings;

The above call would display:

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block:

BEGIN

 greetings;

END;

/

The above call would display:

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure
A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting
a procedure is:

DROP PROCEDURE procedure-name;

So you can drop greetings procedure by using the following statement:

BEGIN

 DROP PROCEDURE greetings;

END;

/

Parameter Modes in PL/SQL Subprograms
S.N. Parameter Mode & Description

1

IN
An IN parameter lets you pass a value to the subprogram. It is a read-only parameter. Inside
the subprogram, an IN parameter acts like a constant. It cannot be assigned a value. You can
pass a constant, literal, initialized variable, or expression as an IN parameter. You can also

TUTORIALSPOINT

Simply Easy Learning Page 68

initialize it to a default value; however, in that case, it is omitted from the subprogram call. It is
the default mode of parameter passing. Parameters are passed by reference.

2

OUT
An OUT parameter returns a value to the calling program. Inside the subprogram, an OUT
parameter acts like a variable. You can change its value and reference the value after assigning
it. The actual parameter must be variable and it is passed by value.

2

IN OUT
An IN OUT parameter passes an initial value to a subprogram and returns an updated value to
the caller. It can be assigned a value and its value can be read.
The actual parameter corresponding to an IN OUT formal parameter must be a variable, not a
constant or an expression. Formal parameter must be assigned a value. Actual parameter is
passed by value.

IN & OUT Mode Example 1
This program finds the minimum of two values, here procedure takes two numbers using IN
mode and returns their minimum using OUT parameters.

DECLARE

 a number;

 b number;

 c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

END;

BEGIN

 a:= 23;

 b:= 45;

 findMin(a, b, c);

 dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2
This procedure computes the square of value of a passed value. This example shows how we
can use same parameter to accept a value and then return another result.

DECLARE

 a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

 x := x * x;

TUTORIALSPOINT

Simply Easy Learning Page 69

END;

BEGIN

 a:= 23;

 squareNum(a);

 dbms_output.put_line(' Square of (23): ' || a);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters
Actual parameters could be passed in three ways:

 Positional notation

 Named notation

 Mixed notation

POSITIONAL NOTATION

In positional notation, you can call the procedure as:

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the
second actual parameter is substituted for the second formal parameter, and so on. So, a is
substituted for x, b is substituted for y, c is substituted for z and d is substituted for m.

NAMED NOTATION

In named notation, the actual parameter is associated with the formal parameter using the arrow
symbol (=>). So the procedure call would look like:

findMin(x=>a, y=>b, z=>c, m=>d);

MIXED NOTATION

In mixed notation, you can mix both notations in procedure call; however, the positional notation
should precede the named notation.

The following call is legal:

findMin(a, b, c, m=>d);

But this is not legal:

findMin(x=>a, b, c, d);

TUTORIALSPOINT

Simply Easy Learning Page 70

Functions

This chapter describes the functions:

APL/SQL function is same as a procedure except that it returns a value. Therefore, all

the discussions of the previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The simplified
syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows modifying an existing function.

 The optional parameter list contains name, mode and types of the parameters. IN
represents that value will be passed from outside and OUT represents that this parameter
will be used to return a value outside of the procedure.

 The function must contain a return statement.

 RETURN clause specifies that data type you are going to return from the function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone function.

CHAPTER

13

TUTORIALSPOINT

Simply Easy Learning Page 71

Example:
The following example illustrates creating and calling a standalone function. This function returns
the total number of CUSTOMERS in the customers table. We will use the CUSTOMERS table,
which we had created in PL/SQL Variables chapter:

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers;

 RETURN total;

END;

/

When above code is executed using SQL prompt, it will produce the following result:

Function created.

Calling a Function
While creating a function, you give a definition of what the function has to do. To use a function,
you will have to call that function to perform the defined task. When a program calls a function,
program control is transferred to the called function.

A called function performs defined task and when its return statement is executed or when it last
end statement is reached, it returns program control back to the main program.

To call a function you simply need to pass the required parameters along with function name and
if function returns a value then you can store returned value. Following program calls the
function totalCustomers from an anonymous block:

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

http://www.tutorialspoint.com/plsql/plsql_variable_types.htm

TUTORIALSPOINT

Simply Easy Learning Page 72

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example:
The following is one more example which demonstrates Declaring, Defining, and Invoking a
Simple PL/SQL Function that computes and returns the maximum of two values.

DECLARE

 a number;

 b number;

 c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

 z number;

BEGIN

 IF x > y THEN

 z:= x;

 ELSE

 Z:= y;

 END IF;

 RETURN z;

END;

BEGIN

 a:= 23;

 b:= 45;

 c := findMax(a, b);

 dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Maximum of (23,45): 78

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions
We have seen that a program or subprogram may call another subprogram. When a subprogram
calls itself, it is referred to as a recursive call and the process is known as recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is
defined as:

n! = n*(n-1)!

 = n*(n-1)*(n-2)!

 ...

 = n*(n-1)*(n-2)*(n-3)... 1

TUTORIALSPOINT

Simply Easy Learning Page 73

The following program calculates the factorial of a given number by calling itself recursively:

DECLARE

 num number;

 factorial number;

FUNCTION fact(x number)

RETURN number

IS

 f number;

BEGIN

 IF x=0 THEN

 f := 1;

 ELSE

 f := x * fact(x-1);

 END IF;

RETURN f;

END;

BEGIN

 num:= 6;

 factorial := fact(num);

 dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Factorial 6 is 720

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 74

Cursors

This chapter explains cursors under PL/SQL:

Oracle creates a memory area, known as context area, for processing an SQL

statement, which contains all information needed for processing the statement, for example,
number of rows processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A
cursor holds the rows (one or more) returned by a SQL statement. The set of rows the cursor
holds is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows
returned by the SQL statement, one at a time. There are two types of cursors:

 Implicit cursors

 Explicit cursors

Implicit Cursors
Implicit cursors are automatically created by Oracle whenever an SQL statement is executed,
when there is no explicit cursor for the statement. Programmers cannot control the implicit
cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is
associated with this statement. For INSERT operations, the cursor holds the data that needs to
be inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be
affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has

the attributes like %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor
has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use
with the FORALL statement. The following table provides the description of the most used
attributes:

Attribute Description

%FOUND Returns TRUE if an INSERT, UPDATE, or DELETE statement affected

CHAPTER

14

TUTORIALSPOINT

Simply Easy Learning Page 75

one or more rows or a SELECT INTO statement returned one or more
rows. Otherwise, it returns FALSE.

%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT,
UPDATE, or DELETE statement affected no rows, or a SELECT INTO
statement returned no rows. Otherwise, it returns FALSE.

%ISOPEN
Always returns FALSE for implicit cursors, because Oracle closes the
SQL cursor automatically after executing its associated SQL statement.

%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or
DELETE statement, or returned by a SELECT INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the

example.

Example:
We will be using the CUSTOMERS table we had created and used in the previous chapters.

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program would update the table and increase salary of each customer by 500 and
use the SQL%ROWCOUNT attribute to determine the number of rows affected:

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 500;

 IF sql%notfound THEN

 dbms_output.put_line('no customers selected');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers selected ');

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been updated:

TUTORIALSPOINT

Simply Easy Learning Page 76

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2500.00 |

| 2 | Khilan | 25 | Delhi | 2000.00 |

| 3 | kaushik | 23 | Kota | 2500.00 |

| 4 | Chaitali | 25 | Mumbai | 7000.00 |

| 5 | Hardik | 27 | Bhopal | 9000.00 |

| 6 | Komal | 22 | MP | 5000.00 |

+----+----------+-----+-----------+----------+

Explicit Cursors
Explicit cursors are programmer defined cursors for gaining more control over the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created
on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is

CURSOR cursor_name IS select_statement;

Working with an explicit cursor involves four steps:

 Declaring the cursor for initializing in the memory

 Opening the cursor for allocating memory

 Fetching the cursor for retrieving data

 Closing the cursor to release allocated memory

Declaring the Cursor
Declaring the cursor defines the cursor with a name and the associated SELECT statement. For
example:

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor
Opening the cursor allocates memory for the cursor and makes it ready for fetching the rows
returned by the SQL statement into it. For example, we will open above-defined cursor as
follows:

OPEN c_customers;

Fetching the Cursor
Fetching the cursor involves accessing one row at a time. For example we will fetch rows from
the above-opened cursor as follows:

TUTORIALSPOINT

Simply Easy Learning Page 77

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor
Closing the cursor means releasing the allocated memory. For example, we will close above-
opened cursor as follows:

CLOSE c_customers;

Example:
Following is a complete example to illustrate the concepts of explicit cursors:

DECLARE

 c_id customers.id%type;

 c_name customers.name%type;

 c_addr customers.address%type;

 CURSOR c_customers is

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_addr;

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

 EXIT WHEN c_customers%notfound;

 END LOOP;

 CLOSE c_customers;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 78

Records

This chapter describes Records in PL/SQL which is a data structure:

A PL/SQL record is a data structure that can hold data items of different kinds. Records

consist of different fields, similar to a row of a database table.

For example, you want to keep track of your books in a library. You might want to track the
following attributes about each book like, Title, Author, Subject, Book ID. A record containing a
field for each of these items allows treating a BOOK as a logical unit and allows you to organize
and represent its information in a better way.

PL/SQL can handle the following types of records:

 Table-based

 Cursor-based records

 User-defined records

Table-Based Records

The %ROWTYPE attribute enables a programmer to create table-based and cursor-
based records.

The following example would illustrate the concept of table-based records. We will be using the

CUSTOMERS table we had created and used in the previous chapters:

DECLARE

 customer_rec customers%rowtype;

BEGIN

 SELECT * into customer_rec

 FROM customers

 WHERE id = 5;

 dbms_output.put_line('Customer ID: ' || customer_rec.id);

 dbms_output.put_line('Customer Name: ' || customer_rec.name);

 dbms_output.put_line('Customer Address: ' || customer_rec.address);

 dbms_output.put_line('Customer Salary: ' || customer_rec.salary);

CHAPTER

15

TUTORIALSPOINT

Simply Easy Learning Page 79

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Customer ID: 5

Customer Name: Hardik

Customer Address: Bhopal

Customer Salary: 9000

PL/SQL procedure successfully completed.

Cursor-Based Records

The following example would illustrate the concept of cursor-based records. We will be using

the CUSTOMERS table we had created and used in the previous chapters:

DECLARE

 CURSOR customer_cur is

 SELECT id, name, address

 FROM customers;

 customer_rec customer_cur%rowtype;

BEGIN

 OPEN customer_cur;

 LOOP

 FETCH customer_cur into customer_rec;

 EXIT WHEN customer_cur%notfound;

 DBMS_OUTPUT.put_line(customer_rec.id || ' ' ||

customer_rec.name);

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

1 Ramesh

2 Khilan

3 kaushik

4 Chaitali

5 Hardik

6 Komal

PL/SQL procedure successfully completed.

User-Defined Records
PL/SQL provides a user-defined record type that allows you to define different record structures.
Records consist of different fields. Suppose you want to keep track of your books in a library.
You might want to track the following attributes about each book:

 Title

 Author

 Subject

TUTORIALSPOINT

Simply Easy Learning Page 80

 Book ID

Defining a Record
The record type is defined as:

TYPE

type_name IS RECORD

 (field_name1 datatype1 [NOT NULL] [:= DEFAULT EXPRESSION],

 field_name2 datatype2 [NOT NULL] [:= DEFAULT EXPRESSION],

 ...

 field_nameN datatypeN [NOT NULL] [:= DEFAULT EXPRESSION);

record-name type_name;

Here is the way you would declare the Book record:

DECLARE

TYPE books IS RECORD

(title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

book1 books;

book2 books;

Accessing Fields
To access any field of a record, we use the dot (.) operator. The member access operator is
coded as a period between the record variable name and the field that we wish to access.
Following is the example to explain usage of record:

DECLARE

 type books is record

 (title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

 book1 books;

 book2 books;

BEGIN

 -- Book 1 specification

 book1.title := 'C Programming';

 book1.author := 'Nuha Ali ';

 book1.subject := 'C Programming Tutorial';

 book1.book_id := 6495407;

 -- Book 2 specification

 book2.title := 'Telecom Billing';

 book2.author := 'Zara Ali';

 book2.subject := 'Telecom Billing Tutorial';

 book2.book_id := 6495700;

 -- Print book 1 record

 dbms_output.put_line('Book 1 title : '|| book1.title);

 dbms_output.put_line('Book 1 author : '|| book1.author);

 dbms_output.put_line('Book 1 subject : '|| book1.subject);

 dbms_output.put_line('Book 1 book_id : ' || book1.book_id);

TUTORIALSPOINT

Simply Easy Learning Page 81

 -- Print book 2 record

 dbms_output.put_line('Book 2 title : '|| book2.title);

 dbms_output.put_line('Book 2 author : '|| book2.author);

 dbms_output.put_line('Book 2 subject : '|| book2.subject);

 dbms_output.put_line('Book 2 book_id : '|| book2.book_id);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

PL/SQL procedure successfully completed.

Records as Subprogram Parameters
You can pass a record as a subprogram parameter in very similar way as you pass any other
variable. You would access the record fields in the similar way as you have accessed in the
above example:

DECLARE

 type books is record

 (title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

 book1 books;

 book2 books;

PROCEDURE printbook (book books) IS

BEGIN

 dbms_output.put_line ('Book title : ' || book.title);

 dbms_output.put_line('Book author : ' || book.author);

 dbms_output.put_line('Book subject : ' || book.subject);

 dbms_output.put_line('Book book_id : ' || book.book_id);

END;

BEGIN

 -- Book 1 specification

 book1.title := 'C Programming';

 book1.author := 'Nuha Ali ';

 book1.subject := 'C Programming Tutorial';

 book1.book_id := 6495407;

 -- Book 2 specification

 book2.title := 'Telecom Billing';

 book2.author := 'Zara Ali';

 book2.subject := 'Telecom Billing Tutorial';

 book2.book_id := 6495700;

 -- Use procedure to print book info

 printbook(book1);

TUTORIALSPOINT

Simply Easy Learning Page 82

 printbook(book2);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 83

Exceptions

This chapter describes error conditions under PL/SQL:

An error condition during a program execution is called an exception in PL/SQL. PL/SQL

supports programmers to catch such conditions using EXCEPTION block in the program and an
appropriate action is taken against the error condition. There are two types of exceptions:

 System-defined exceptions

 User-defined exceptions

Syntax for Exception Handling

The General Syntax for exception handling is as follows. Here, you can list down as many as
exceptions you want to handle. The default exception will be handled using WHEN others THEN:

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Example
Let us write some simple code to illustrate the concept. We will be using the CUSTOMERS table
we had created and used in the previous chapters:

CHAPTER

16

TUTORIALSPOINT

Simply Easy Learning Page 84

DECLARE

 c_id customers.id%type := 8;

 c_name customers.name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at SQL prompt, it produces the following result:

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since
there is no customer with ID value 8 in our database, the program raises the run-time exception
NO_DATA_FOUND, which is captured in EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal
database error, but exceptions can be raised explicitly by the programmer by using the
command RAISE. Following is the simple syntax of raising an exception:

DECLARE

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN
 statement;

END;

You can use above syntax in raising Oracle standard exception or any user-defined exception.
Next section will give you an example on raising user-defined exception, similar way you can
raise Oracle standard exceptions as well.

User-defined Exceptions
PL/SQL allows you to define your own exceptions according to the need of your program. A
user-defined exception must be declared and then raised explicitly, using either a RAISE
statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

TUTORIALSPOINT

Simply Easy Learning Page 85

The syntax for declaring an exception is:

DECLARE

 my-exception EXCEPTION;

Example:
The following example illustrates the concept. This program asks for a customer ID, when the
user enters an invalid ID, the exception invalid_id is raised.

DECLARE

 c_id customers.id%type := &cc_id;

 c_name customers.name%type;

 c_addr customers.address%type;

 -- user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

 ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

 END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line('ID must be greater than zero!');

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions
PL/SQL provides many pre-defined exceptions, which are executed when any database rule is
violated by a program. For example, the predefined exception NO_DATA_FOUND is raised
when a SELECT INTO statement returns no rows. The following table lists few of the important
pre-defined exceptions:

Exception
Oracle
Error

SQLCODE Description

TUTORIALSPOINT

Simply Easy Learning Page 86

ACCESS_INTO_NULL 06530 -6530
It is raised when a null object is
automatically
assigned a value.

CASE_NOT_FOUND 06592 -6592

It is raised when none of the choices in the
WHEN clauses of a CASE statement is
selected,
 and there is no ELSE clause.

COLLECTION_IS_NULL 06531 -6531

It is raised when a program attempts to
apply
collection methods other than EXISTS to an
 uninitialized nested table or varray, or the
program
 attempts to assign values to the elements
of an
uninitialized nested table or varray.

DUP_VAL_ON_INDEX 00001 -1
It is raised when duplicate values are
attempted to
 be stored in a column with unique index.

INVALID_CURSOR 01001 -1001

It is raised when attempts are made to make
a
cursor operation that is not allowed, such as
 closing an unopened cursor.

INVALID_NUMBER 01722 -1722

It is raised when the conversion of a
character
 string into a number fails because the string
does
 not represent a valid number.

LOGIN_DENIED 01017 -1017

It is raised when s program attempts to log
on to
 the database with an invalid username or
password.

NO_DATA_FOUND 01403 +100
It is raised when a SELECT INTO statement
returns no rows.

NOT_LOGGED_ON 01012 -1012
It is raised when a database call is issued
without
being connected to the database.

PROGRAM_ERROR 06501 -6501
It is raised when PL/SQL has an internal
problem.

ROWTYPE_MISMATCH 06504 -6504
It is raised when a cursor fetches value in a
variable
 having incompatible data type.

SELF_IS_NULL 30625 -30625

It is raised when a member method is
invoked, but
the instance of the object type was not
initialized.

TUTORIALSPOINT

Simply Easy Learning Page 87

STORAGE_ERROR 06500 -6500
It is raised when PL/SQL ran out of memory
or
 memory was corrupted.

TOO_MANY_ROWS 01422 -1422
It is raised when s SELECT INTO statement
returns
 more than one row.

VALUE_ERROR 06502 -6502
It is raised when an arithmetic, conversion,
truncation, or size-constraint error occurs.

ZERO_DIVIDE 01476 1476
It is raised when an attempt is made to
divide a
number by zero.

TUTORIALSPOINT

Simply Easy Learning Page 88

Triggers

This chapter describes Triggers under PL/SQL:

Triggers are stored programs, which are automatically executed or fired when some

events occur. Triggers are, in fact, written to be executed in response to any of the following
events:

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is
associated.

Benefits of Triggers
Triggers can be written for the following purposes:

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

CHAPTER

17

TUTORIALSPOINT

Simply Easy Learning Page 89

Creating Triggers
The syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Where,

 CREATE [OR REPLACE] TRIGGER trigger_name: Creates or replaces an existing trigger
with the trigger_name.

 {BEFORE | AFTER | INSTEAD OF}: This specifies when the trigger would be executed. The
INSTEAD OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

 [OF col_name]: This specifies the column name that would be updated.

 [ON table_name]: This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values for
various DML statements, like INSERT, UPDATE, and DELETE.

 [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed for
each row being affected. Otherwise the trigger will execute just once when the SQL
statement is executed, which is called a table level trigger.

 WHEN (condition): This provides a condition for rows for which the trigger would fire. This
clause is valid only for row level triggers.

Example:

To start with, we will be using the CUSTOMERS table we had created and used in the previous

chapters:

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

TUTORIALSPOINT

Simply Easy Learning Page 90

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program creates a row level trigger for the customers table that would fire for

INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger
will display the salary difference between the old values and new values:

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Trigger created.

Here following two points are important and should be noted carefully:

 OLD and NEW references are not available for table level triggers, rather you can use
them for record level triggers.

 If you want to query the table in the same trigger, then you should use the AFTER
keyword, because triggers can query the table or change it again only after the initial
changes are applied and the table is back in a consistent state.

 Above trigger has been written in such a way that it will fire before any DELETE or
INSERT or UPDATE operation on the table, but you can write your trigger on a single
or multiple operations, for example BEFORE DELETE, which will fire whenever a
record will be deleted using DELETE operation on the table.

Triggering a Trigger
Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT
statement, which will create a new record in the table:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in CUSTOMERS table, above create
trigger display_salary_changes will be fired and it will display the following result:

Old salary:

New salary: 7500

TUTORIALSPOINT

Simply Easy Learning Page 91

Salary difference:

Because this is a new record so old salary is not available and above result is coming as null.
Now, let us perform one more DML operation on the CUSTOMERS table. Here is one UPDATE
statement, which will update an existing record in the table:

UPDATE customers

SET salary = salary + 500

WHERE id = 2;

When a record is updated in CUSTOMERS table, above create
trigger display_salary_changes will be fired and it will display the following result:

Old salary: 1500

New salary: 2000

Salary difference: 500

TUTORIALSPOINT

Simply Easy Learning Page 92

Packages

This chapter describes Packages under PL/SQL:

PL/SQL packages are schema objects that groups logically related PL/SQL types,

variables and subprograms.

A package will have two mandatory parts:

 Package specification

 Package body or definition

Package Specification
The specification is the interface to the package. It just DECLARES the types, variables,
constants, exceptions, cursors, and subprograms that can be referenced from outside the
package. In other words, it contains all information about the content of the package, but
excludes the code for the subprograms.

All objects placed in the specification are called public objects. Any subprogram not in the
package specification but coded in the package body is called a private object.

The following code snippet shows a package specification having a single procedure. You can
have many global variables defined and multiple procedures or functions inside a package.

CREATE PACKAGE cust_sal AS

 PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;

/

When the above code is executed at SQL prompt, it produces the following result:

Package created.

CHAPTER

18

TUTORIALSPOINT

Simply Easy Learning Page 93

Package Body
The package body has the codes for various methods declared in the package specification and
other private declarations, which are hidden from code outside the package.

The CREATE PACKAGE BODY Statement is used for creating the package body. The following
code snippet shows the package body declaration for the cust_sal package created above. I
assumed that we already have CUSTOMERS table created in our database as mentioned
in PL/SQL - Variableschapter.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_id customers.id%TYPE) IS

 c_sal customers.salary%TYPE;

 BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line('Salary: '|| c_sal);

 END find_sal;

END cust_sal;

/

When the above code is executed at SQL prompt, it produces the following result:

Package body created.

Using the Package Elements
The package elements (variables, procedures or functions) are accessed with the following
syntax:

package_name.element_name;

Consider, we already have created above package in our database schema, the following
program uses the find_sal method of the cust_sal package:

DECLARE

 code customers.id%type := &cc_id;

BEGIN

 cust_sal.find_sal(code);

END;

/

When the above code is executed at SQL prompt, it prompt to enter customer ID and when you
enter an ID, it displays corresponding salary as follows:

Enter value for cc_id: 1

Salary: 3000

PL/SQL procedure successfully completed.

Example:

http://www.tutorialspoint.com/plsql/plsql_variable_types.htm

TUTORIALSPOINT

Simply Easy Learning Page 94

The following program provides a more complete package. We will use the CUSTOMERS table
stored in our database with the following records:

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 3000.00 |

| 2 | Khilan | 25 | Delhi | 3000.00 |

| 3 | kaushik | 23 | Kota | 3000.00 |

| 4 | Chaitali | 25 | Mumbai | 7500.00 |

| 5 | Hardik | 27 | Bhopal | 9500.00 |

| 6 | Komal | 22 | MP | 5500.00 |

+----+----------+-----+-----------+----------+

THE PACKAGE SPECIFICATION:

CREATE OR REPLACE PACKAGE c_package AS

 -- Adds a customer

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customers.name%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type);

 -- Removes a customer

 PROCEDURE delCustomer(c_id customers.id%TYPE);

 --Lists all customers

 PROCEDURE listCustomer;

END c_package;

/

When the above code is executed at SQL prompt, it creates the above package and displays the
following result:

Package created.

CREATING THE PACKAGE BODY:

CREATE OR REPLACE PACKAGE BODY c_package AS

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customers.name%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type)

 IS

 BEGIN

 INSERT INTO customers (id,name,age,address,salary)

 VALUES(c_id, c_name, c_age, c_addr, c_sal);

 END addCustomer;

 PROCEDURE delCustomer(c_id customers.id%type) IS

 BEGIN

 DELETE FROM customers

 WHERE id = c_id;

 END delCustomer;

TUTORIALSPOINT

Simply Easy Learning Page 95

 PROCEDURE listCustomer IS

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list is TABLE OF customers.name%type;

 name_list c_list := c_list();

 counter integer :=0;

 BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer(' ||counter||

')'||name_list(counter));

 END LOOP;

 END listCustomer;

END c_package;

/

Above example makes use of nested table which we will discuss in the next chapter. When the

above code is executed at SQL prompt, it produces the following result:

Package body created.

USING THE PACKAGE:
The following program uses the methods declared and defined in the package c_package.

DECLARE

 code customers.id%type:= 8;

BEGIN

 c_package.addcustomer(7, 'Rajnish', 25, 'Chennai', 3500);

 c_package.addcustomer(8, 'Subham', 32, 'Delhi', 7500);
 c_package.listcustomer;
 c_package.delcustomer(code);

 c_package.listcustomer;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

Customer(7): Rajnish

Customer(8): Subham

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

Customer(7): Rajnish

PL/SQL procedure successfully completed

TUTORIALSPOINT

Simply Easy Learning Page 96

Collections

This chapter describes Collection under PL/SQL:

Acollection is an ordered group of elements having the same data type. Each element is

identified by a unique subscript that represents its position in the collection.

PL/SQL provides three collection types:

 Index-by tables or Associative array

 Nested table

 Variable-size array or Varray

Oracle documentation provides the following characteristics for each type of collections:

Collection
Type

Number of
Elements

Subscript
Type

Dense or
Sparse

Where
Created

Can Be Object
Type Attribute

Associative
array (or
index-by
table)

Unbounded
String or
integer

Either
Only in PL/SQL
block

No

Nested
table

Unbounded Integer

Starts
dense,
can
become
sparse

Either in
PL/SQL block
or at schema
level

Yes

Variable-
size array
(Varray)

Bounded Integer
Always
dense

Either in
PL/SQL block
or at schema
level

Yes

We have already discussed varray in the chapter 'PL/SQL arrays'. In this chapter, we will discuss
PL/SQL tables.

CHAPTER

19

TUTORIALSPOINT

Simply Easy Learning Page 97

Both types of PL/SQL tables, i.e., index-by tables and nested tables have the same structure
and their rows are accessed using the subscript notation. However, these two types of tables
differ in one aspect; the nested tables can be stored in a database column and the index-by
tables cannot.

Index-By Table
An index-by table (also called an associative array) is a set of key-value pairs. Each key is

unique and is used to locate the corresponding value. The key can be either an integer or a
string.

An index-by table is created using the following syntax. Here, we are creating an index-by table
namedtable_name whose keys will be of subscript_type and associated values will be
of element_type.

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY

subscript_type;

table_name type_name;

Example:
Following example shows how to create a table to store integer values along with names and
later it prints the same list of names.

DECLARE

 TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);

 salary_list salary;

 name VARCHAR2(20);

BEGIN

 -- adding elements to the table

 salary_list('Rajnish') := 62000;

 salary_list('Minakshi') := 75000;

 salary_list('Martin') := 100000;

 salary_list('James') := 78000;

 -- printing the table

 name := salary_list.FIRST;

 WHILE name IS NOT null LOOP

 dbms_output.put_line

 ('Salary of ' || name || ' is ' || TO_CHAR(salary_list(name)));

 name := salary_list.NEXT(name);

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Salary of Rajnish is 62000

Salary of Minakshi is 75000

Salary of Martin is 100000

Salary of James is 78000

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 98

Example:
Elements of an index-by table could also be a %ROWTYPE of any database table or %TYPE of
any database table field. The following example illustrates the concept. We will use the
CUSTOMERS table stored in our database as:

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

DECLARE

 CURSOR c_customers is

 select name from customers;

 TYPE c_list IS TABLE of customers.name%type INDEX BY binary_integer;

 name_list c_list;

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer('||counter||

'):'||name_list(counter));

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed

Nested Tables

A nested table is like a one-dimensional array with an arbitrary number of elements. However, a

nested table differs from an array in the following aspects:

 An array has a declared number of elements, but a nested table does not. The size of a
nested table can increase dynamically.

TUTORIALSPOINT

Simply Easy Learning Page 99

 An array is always dense, i.e., it always has consecutive subscripts. A nested array is dense
initially, but it can become sparse when elements are deleted from it.

A nested table is created using the following syntax:

TYPE type_name IS TABLE OF element_type [NOT NULL];

table_name type_name;

This declaration is similar to declaration of an index-by table, but there is no INDEX BY clause.

A nested table can be stored in a database column and so it could be used for simplifying SQL
operations where you join a single-column table with a larger table. An associative array cannot
be stored in the database.

Example:
The following examples illustrate the use of nested table:

DECLARE

 TYPE names_table IS TABLE OF VARCHAR2(10);

 TYPE grades IS TABLE OF INTEGER;

 names names_table;

 marks grades;

 total integer;

BEGIN

 names := names_table('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line('Total '|| total || ' Students');

 FOR i IN 1 .. total LOOP

 dbms_output.put_line('Student:'||names(i)||', Marks:' ||

marks(i));

 end loop;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Total 5 Students

Student:Kavita, Marks:98

Student:Pritam, Marks:97

Student:Ayan, Marks:78

Student:Rishav, Marks:87

Student:Aziz, Marks:92

PL/SQL procedure successfully completed.

Example:
Elements of a nested table could also be a %ROWTYPE of any database table or %TYPE of

any database table field. The following example illustrates the concept. We will use the
CUSTOMERS table stored in our database as:

Select * from customers;

+----+----------+-----+-----------+----------+

TUTORIALSPOINT

Simply Easy Learning Page 100

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

DECLARE

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list IS TABLE of customers.name%type;

 name_list c_list := c_list();

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

dbms_output.put_line('Customer('||counter||'):'||name_list(counter));

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed.

Collection Methods
PL/SQL provides the built-in collection methods that make collections easier to use. The
following table lists the methods and their purpose:

S.N. Method Name & Purpose

1
EXISTS(n)

Returns TRUE if the nth element in a collection exists; otherwise returns FALSE.

2
COUNT

Returns the number of elements that a collection currently contains.

3 LIMIT

TUTORIALSPOINT

Simply Easy Learning Page 101

Checks the Maximum Size of a Collection.

4
FIRST

Returns the first (smallest) index numbers in a collection that uses integer subscripts.

5
LAST

Returns the last (largest) index numbers in a collection that uses integer subscripts.

6
PRIOR(n)

Returns the index number that precedes index n in a collection.

7
NEXT(n)

Returns the index number that succeeds index n.

8
EXTEND

Appends one null element to a collection.

9
EXTEND(n)

Appends n null elements to a collection.

10
EXTEND(n,i)

Appends n copies of the ith element to a collection.

11
TRIM

Removes one element from the end of a collection.

12
TRIM(n)

Removes n elements from the end of a collection.

13
DELETE

Removes all elements from a collection, setting COUNT to 0.

14

DELETE(n)

Removes the nth element from an associative array with a numeric key or a nested table.
If the associative array has a string key, the element corresponding to the key value is
deleted. If n is null, DELETE(n) does nothing.

15

DELETE(m,n)

Removes all elements in the range m..n from an associative array or nested table. If m is
larger than n or if m or n is null, DELETE(m,n) does nothing.

Collection Exceptions
The following table provides the collection exceptions and when they are raised:

Collection Exception Raised in Situations

COLLECTION_IS_NULL You try to operate on an atomically null collection.

NO_DATA_FOUND
A subscript designates an element that was deleted, or a
nonexistent element of an associative array.

SUBSCRIPT_BEYOND_COUNT A subscript exceeds the number of elements in a collection.

SUBSCRIPT_OUTSIDE_LIMIT A subscript is outside the allowed range.

TUTORIALSPOINT

Simply Easy Learning Page 102

VALUE_ERROR

A subscript is null or not convertible to the key type. This
exception might occur if the key is defined as a
PLS_INTEGER range, and the subscript is outside this
range.

TUTORIALSPOINT

Simply Easy Learning Page 103

Transactions

This chapter describes the Transactions under PL/SQL:

Adatabase transaction is an atomic unit of work that may consist of one or more

related SQL statements. It is called atomic because the database modifications brought about by
the SQL statements that constitute a transaction can collectively be either committed, i.e., made
permanent to the database or rolled back (undone) from the database.

A successfully executed SQL statement and a committed transaction are not same. Even if an
SQL statement is executed successfully, unless the transaction containing the statement is
committed, it can be rolled back and all changes made by the statement(s) can be undone.

Starting an Ending a Transaction
A transaction has a beginning and an end. A transaction starts when one of the following events

take place:

 The first SQL statement is performed after connecting to the database.

 At each new SQL statement issued after a transaction is completed.

A transaction ends when one of the following events take place:

 A COMMIT or a ROLLBACK statement is issued.

 A DDL statement, like CREATE TABLE statement, is issued; because in that case a
COMMIT is automatically performed.

 A DCL statement, such as a GRANT statement, is issued; because in that case a COMMIT
is automatically performed.

 User disconnects from the database.

 User exits from SQL*PLUS by issuing the EXIT command, a COMMIT is automatically
performed.

CHAPTER

20

TUTORIALSPOINT

Simply Easy Learning Page 104

 SQL*Plus terminates abnormally, a ROLLBACK is automatically performed.

 A DML statement fails; in that case a ROLLBACK is automatically performed for undoing
that DML statement.

Committing a Transaction
A transaction is made permanent by issuing the SQL command COMMIT. The general syntax
for the COMMIT command is:

COMMIT;

For example,

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Komal', 22, 'MP', 4500.00);

COMMIT;

Rolling Back Transactions
Changes made to the database without COMMIT could be undone using the ROLLBACK
command.

The general syntax for the ROLLBACK command is:

ROLLBACK [TO SAVEPOINT < savepoint_name>];

When a transaction is aborted due to some unprecedented situation, like system failure, the
entire transaction since a commit is automatically rolled back. If you are not
using savepoint, then simply use the following statement to rollback all the changes:

ROLLBACK;

Savepoints
Savepoints are sort of markers that help in splitting a long transaction into smaller units by
setting some checkpoints. By setting savepoints within a long transaction, you can roll back to a
checkpoint if required. This is done by issuing the SAVEPOINT command.

The general syntax for the SAVEPOINT command is:

SAVEPOINT < savepoint_name >;

TUTORIALSPOINT

Simply Easy Learning Page 105

For example:

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Rajnish', 27, 'HP', 9500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (8, 'Riddhi', 21, 'WB', 4500.00);

SAVEPOINT sav1;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000;

ROLLBACK TO sav1;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 7;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 8;

COMMIT;

Here, ROLLBACK TO sav1; statement rolls sback the changes up to the point, where you had
marked savepoint sav1 and after that new changes will start.

Automatic Transaction Control

To execute a COMMIT automatically whenever an INSERT, UPDATE or DELETE command is
executed, you can set the AUTOCOMMIT environment variable as:

SET AUTOCOMMIT ON;

You can turn-off auto commit mode using the following command:

SET AUTOCOMMIT OFF;

TUTORIALSPOINT

Simply Easy Learning Page 106

Date & Time

This chapter describes the Date & Time classes:

PL/SQL provides two classes of date and time related data types:

 Datetime data types

 Interval data types

The Datetime data types are:

 DATE

 TIMESTAMP

 TIMESTAMP WITH TIME ZONE

 TIMESTAMP WITH LOCAL TIME ZONE

The Interval data types are:

 INTERVAL YEAR TO MONTH

 INTERVAL DAY TO SECOND

Field Values for Datetime and Interval Data Types

Both datetime and interval data types consist of fields. The values of these fields determine the

value of the datatype. The following table lists the fields and their possible values for datetimes
and intervals.

Field Name Valid Datetime Values Valid Interval Values

YEAR
-4712 to 9999 (excluding
year 0)

Any nonzero integer

CHAPTER

21

TUTORIALSPOINT

Simply Easy Learning Page 107

MONTH 01 to 12 0 to 11

DAY

01 to 31 (limited by the
values of MONTH and YEAR,
according to the rules of the
calendar for the locale)

Any nonzero integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND

00 to 59.9(n), where 9(n) is
the precision of time
fractional seconds
The 9(n) portion is not
applicable for DATE.

0 to 59.9(n), where 9(n) is the precision
of interval fractional seconds

TIMEZONE_HOUR

-12 to 14 (range
accommodates daylight
savings time changes)
Not applicable for DATE or
TIMESTAMP.

Not applicable

TIMEZONE_MINUTE
00 to 59
Not applicable for DATE or
TIMESTAMP.

Not applicable

TIMEZONE_REGION
Not applicable for DATE or
TIMESTAMP.

Not applicable

TIMEZONE_ABBR
Not applicable for DATE or
TIMESTAMP.

Not applicable

The Datetime Data Types and Functions

Following are the Datetime data types:

 DATE - it stores date and time information in both character and number datatypes. It is

made of information on century, year, month, date, hour, minute, and second. It is specified
as:

 TIMESTAMP - it is an extension of the DATE datatype. It stores the year, month, and day of

the DATE datatype, along with hour, minute, and second values. It is useful for storing
precise time values.

 TIMESTAMP WITH TIME ZONE - it is a variant of TIMESTAMP that includes a time zone

region name or a time zone offset in its value. The time zone offset is the difference (in hours
and minutes) between local time and UTC. This datatype is useful for collecting and
evaluating date information across geographic regions.

TUTORIALSPOINT

Simply Easy Learning Page 108

 TIMESTAMP WITH LOCAL TIME ZONE - it is another variant of TIMESTAMP that includes

a time zone offset in its value.

Following table provides the Datetime functions (where, x has datetime value):

S.N Function Name & Description

1
ADD_MONTHS(x, y);

Adds y months to x.

2
LAST_DAY(x);

Returns the last day of the month.

3
MONTHS_BETWEEN(x, y);

Returns the number of months between x and y.

4
NEXT_DAY(x, day);
Returns the datetime of the next day after x.

5
NEW_TIME;

Returns the time/day value from a time zone specified by the user.

6
ROUND(x [, unit]);

Rounds x;

7
SYSDATE();

Returns the current datetime.

8
TRUNC(x [, unit]);

Truncates x.

Timestamp functions (where, x has a timestamp value):

S.N Function Name & Description

1

CURRENT_TIMESTAMP();

Returns a TIMESTAMP WITH TIME ZONE containing the current session time along
with the session time zone.

2

EXTRACT({ YEAR | MONTH | DAY | HOUR | MINUTE | SECOND } | {
TIMEZONE_HOUR | TIMEZONE_MINUTE } | { TIMEZONE_REGION | }
TIMEZONE_ABBR) FROM x)

Extracts and returns a year, month, day, hour, minute, second, or time zone from x;

3

FROM_TZ(x, time_zone);

Converts the TIMESTAMP x and time zone specified by time_zone to a TIMESTAMP
WITH TIMEZONE.

TUTORIALSPOINT

Simply Easy Learning Page 109

4
LOCALTIMESTAMP();

Returns a TIMESTAMP containing the local time in the session time zone.

5

SYSTIMESTAMP();

Returns a TIMESTAMP WITH TIME ZONE containing the current database time along
with the database time zone.

6

SYS_EXTRACT_UTC(x);

Converts the TIMESTAMP WITH TIMEZONE x to a TIMESTAMP containing the date
and time in UTC.

7
TO_TIMESTAMP(x, [format]);

Converts the string x to a TIMESTAMP.

8
TO_TIMESTAMP_TZ(x, [format]);

Converts the string x to a TIMESTAMP WITH TIMEZONE.

Examples:
The following code snippets illustrate the use of the above functions:

SELECT SYSDATE FROM DUAL;

Output:

08/31/2012 5:25:34 PM

Output:

31-08-2012 05:26:14

Output:

01/31/2013 5:26:31 PM

Output:

SELECT TO_CHAR(CURRENT_DATE, 'DD-MM-YYYY HH:MI:SS') FROM DUAL;

SELECT ADD_MONTHS(SYSDATE, 5) FROM DUAL;

SELECT LOCALTIMESTAMP FROM DUAL;

TUTORIALSPOINT

Simply Easy Learning Page 110

8/31/2012 5:26:55.347000 PM

The Interval Data Types and Functions
Following are the Interval data types:

 INTERVAL YEAR TO MONTH - it stores a period of time using the YEAR and MONTH
datetime fields.

 INTERVAL DAY TO SECOND - it stores a period of time in terms of days, hours,
minutes, and seconds.

Interval functions:

S.N Function Name & Description

1
NUMTODSINTERVAL(x, interval_unit);

Converts the number x to an INTERVAL DAY TO SECOND.

2
NUMTOYMINTERVAL(x, interval_unit);

Converts the number x to an INTERVAL YEAR TO MONTH.

3
TO_DSINTERVAL(x);

Converts the string x to an INTERVAL DAY TO SECOND.

4
TO_YMINTERVAL(x);

Converts the string x to an INTERVAL YEAR TO MONTH.

TUTORIALSPOINT

Simply Easy Learning Page 111

DBMS Output

This chapter describes the built-in-package DBMS_OUTPUT:

The DBMS_OUTPUT is a built-in package that enables you to display output, display

debugging information, and send messages from PL/SQL blocks, subprograms, packages, and
triggers. We have already used this package all throughout our tutorial.

Let us look at a small code snippet that would display all the user tables in the database. Try it in
your database to list down all the table names:

BEGIN

 dbms_output.put_line (user || ' Tables in the database:');

 FOR t IN (SELECT table_name FROM user_tables)

 LOOP

 dbms_output.put_line(t.table_name);

 END LOOP;

END;

/

DBMS_OUTPUT Subprograms

The DBMS_OUTPUT package has the following subprograms:

S.
N

Subprogram & Purpose

1
DBMS_OUTPUT.DISABLE;

Disables message output

2

DBMS_OUTPUT.ENABLE(buffer_size IN INTEGER DEFAULT 20000);

Enables message output. A NULL value of buffer_size represents unlimited buffer
size.

3
DBMS_OUTPUT.GET_LINE (line OUT VARCHAR2, status OUT INTEGER);

Retrieves a single line of buffered information.

CHAPTER

22

TUTORIALSPOINT

Simply Easy Learning Page 112

4
DBMS_OUTPUT.GET_LINES (lines OUT CHARARR, numlines IN OUT INTEGER);

Retrieves an array of lines from the buffer.

5
DBMS_OUTPUT.NEW_LINE;

Puts an end-of-line marker

6
DBMS_OUTPUT.PUT(item IN VARCHAR2);

Places a partial line in the buffer.

7
DBMS_OUTPUT.PUT_LINE(item IN VARCHAR2);

Places a line in the buffer.

Example:
DECLARE

 lines dbms_output.chararr;

 num_lines number;

BEGIN

 -- enable the buffer with default size 20000

 dbms_output.enable;

 dbms_output.put_line('Hello Reader!');

 dbms_output.put_line('Hope you have enjoyed the tutorials!');

 dbms_output.put_line('Have a great time exploring pl/sql!');

 num_lines := 3;

 dbms_output.get_lines(lines, num_lines);

 FOR i IN 1..num_lines LOOP

 dbms_output.put_line(lines(i));

 END LOOP;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Hello Reader!

Hope you have enjoyed the tutorials!

Have a great time exploring pl/sql!

PL/SQL procedure successfully completed.

TUTORIALSPOINT

Simply Easy Learning Page 113

Object Oriented

This chapter describes the Object oriented concept:

PL/SQL allows defining an object type, which helps in designing object-oriented database

in Oracle. An object type allows you to crate composite types. Using objects allow you
implementing real world objects with specific structure of data and methods for operating it.
Objects have attributes and methods. Attributes are properties of an object and are used for
storing an object's state; and methods are used for modeling its behaviors.

Objects are created using the CREATE [OR REPLACE] TYPE statement. Below is an example

to create a simple address object consisting of few attributes:

CREATE OR REPLACE TYPE address AS OBJECT

(house_no varchar2(10),

 street varchar2(30),

 city varchar2(20),

 state varchar2(10),

 pincode varchar2(10)

);

/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Let's create one more object customer where we will wrap attributes and methods together to

have object oriented feeling:

CREATE OR REPLACE TYPE customer AS OBJECT

(code number(5),

 name varchar2(30),

 contact_no varchar2(12),

 addr address,

 member procedure display

);

/

CHAPTER

23

TUTORIALS POINT

Simply Easy Learning Page 114

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Instantiating an Object

Defining an object type provides a blueprint for the object. To use this object, you need to create
instances of this object. You can access the attributes and methods of the object using the
instance name and the access operator (.) as follows:

DECLARE

 residence address;

BEGIN

 residence := address('103A', 'M.G.Road', 'Jaipur',

'Rajasthan','201301');

 dbms_output.put_line('House No: '|| residence.house_no);

 dbms_output.put_line('Street: '|| residence.street);

 dbms_output.put_line('City: '|| residence.city);

 dbms_output.put_line('State: '|| residence.state);

 dbms_output.put_line('Pincode: '|| residence.pincode);

END;

/

When the above code is executed at SQL prompt, it produces the following result:

House No: 103A

Street: M.G.Road

City: Jaipur

State: Rajasthan

Pincode: 201301

PL/SQL procedure successfully completed.

Member Methods
Member methods are used for manipulating the attributes of the object. You provide the

declaration of a member method while declaring the object type. The object body defines the
code for the member methods. The object body is created using the CREATE TYPE BODY
statement.
Constructors are functions that return a new object as its value. Every object has a system

defined constructor method. The name of the constructor is same as the object type. For
example:

residence := address('103A', 'M.G.Road', 'Jaipur',

'Rajasthan','201301');

The comparison methods are used for comparing objects. There are two ways to compare

objects:

 Map method: The Map method is a function implemented in such a way that its value

depends upon the value of the attributes. For example, for a customer object, if the
customer code is same for two customers, both customers could be the same and one. So
the relationship between these two objects would depend upon the value of code.

 Order method: The Order methods implement some internal logic for comparing two

objects. For example, for a rectangle object, a rectangle is bigger than another rectangle if
both its sides are bigger.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning Page 115

Using Map method
Let us try to understand above concepts using the following rectangle object:

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 member function enlarge(inc number) return rectangle,

 member procedure display,

 map member function measure return number

);

/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the type body:

CREATE OR REPLACE TYPE BODY rectangle AS

 MEMBER FUNCTION enlarge(inc number) return rectangle IS

 BEGIN

 return rectangle(self.length + inc, self.width + inc);

 END enlarge;

 MEMBER PROCEDURE display IS

 BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 END display;

 MAP MEMBER FUNCTION measure return number IS

 BEGIN

 return (sqrt(length*length + width*width));

 END measure;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Now using the rectangle object and its member functions:

DECLARE

 r1 rectangle;

 r2 rectangle;

 r3 rectangle;

 inc_factor number := 5;

BEGIN

 r1 := rectangle(3, 4);

 r2 := rectangle(5, 7);

 r3 := r1.enlarge(inc_factor);

 r3.display;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning Page 116

 IF (r1 > r2) THEN -- calling measure function

 r1.display;

 ELSE

 r2.display;

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Length: 8

Width: 9

Length: 5

Width: 7

PL/SQL procedure successfully completed.

Using Order method
Now, the same effect could be achieved using an order method. Let us recreate the

rectangle object using an order method:

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 member procedure display,

 order member function measure(r rectangle) return number

);

/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the type body:

CREATE OR REPLACE TYPE BODY rectangle AS

 MEMBER PROCEDURE display IS

 BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 END display;

 ORDER MEMBER FUNCTION measure(r rectangle) return number IS

 BEGIN

 IF(sqrt(self.length*self.length + self.width*self.width)>

sqrt(r.length*r.length + r.width*r.width)) then

 return(1);

 ELSE

 return(-1);

 END IF;

 END measure;

END;

/

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning Page 117

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Using the rectangle object and its member functions:

DECLARE

 r1 rectangle;

 r2 rectangle;

BEGIN

 r1 := rectangle(23, 44);

 r2 := rectangle(15, 17);

 r1.display;

 r2.display;

 IF (r1 > r2) THEN -- calling measure function

 r1.display;

 ELSE

 r2.display;

 END IF;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Length: 23

Width: 44

Length: 15

Width: 17

Length: 23

Width: 44

PL/SQL procedure successfully completed.

Inheritance for PL/SQL Objects:
PL/SQL allows creating object from existing base objects. To implement inheritance, the base
objects should be declared as NOT FINAL. The default is FINAL.

The following programs illustrate inheritance in PL/SQL Objects. Let us create another object
named TableTop, which is inheriting from the Rectangle object. Creating the
base rectangle object:

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 member function enlarge(inc number) return rectangle,

 NOT FINAL member procedure display) NOT FINAL

/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the base type body:

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning Page 118

CREATE OR REPLACE TYPE BODY rectangle AS

 MEMBER FUNCTION enlarge(inc number) return rectangle IS

 BEGIN

 return rectangle(self.length + inc, self.width + inc);

 END enlarge;

 MEMBER PROCEDURE display IS

 BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 END display;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Creating the child object tabletop:

CREATE OR REPLACE TYPE tabletop UNDER rectangle

(

 material varchar2(20);

 OVERRIDING member procedure display

)

/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

Creating the type body for the child object tabletop:

CREATE OR REPLACE TYPE BODY tabletop AS

OVERRIDING MEMBER PROCEDURE display IS

BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 dbms_output.put_line('Material: '|| material);

END display;

/

When the above code is executed at SQL prompt, it produces the following result:

Type body created.

Using the tabletop object and its member functions:

DECLARE

 t1 tabletop;

 t2 tabletop;

BEGIN

 t1:= tabletop(20, 10, 'Wood');

 t2 := tabletop(50, 30, 'Steel');

 t1.display;

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TUTORIALS POINT

Simply Easy Learning Page 119

 t2.display;

END;

/

When the above code is executed at SQL prompt, it produces the following result:

Length: 20

Width: 10

Material: Wood

Length: 50

Width: 30

Material: Steel

PL/SQL procedure successfully completed.

Abstract Objects in PL/SQL
The NOT INSTANTIABLE clause allows you to declare an abstract object. You cannot use an
abstract object as it is; you will have to create a subtype or child type of such objects to use its
functionalities.

For example,

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 NOT INSTANTIABLE NOT FINAL MEMBER PROCEDURE display)

 NOT INSTANTIABLE NOT FINAL

/

When the above code is executed at SQL prompt, it produces the following result:

Type created.

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

	PL/SQL Tutorial
	Audience
	Prerequisites
	Before proceeding with this tutorial, you should have a basic understanding of software basic concepts like what is database, source code, text editor and execution of programs, etc. If you already have understanding on SQL and other computer programm...
	Copyright & Disclaimer Notice
	PL/SQL Overview
	Features of PL/SQL
	Advantages of PL/SQL

	Environment
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Final Step
	Text Editor

	Basic Syntax
	The 'Hello World' Example:
	The PL/SQL Identifiers
	The PL/SQL Delimiters
	The PL/SQL Comments
	PL/SQL Program Units

	Data Types
	PL/SQL Scalar Data Types and Subtypes
	PL/SQL Numeric Data Types and Subtypes
	PL/SQL Character Data Types and Subtypes
	PL/SQL Boolean Data Types
	PL/SQL Datetime and Interval Types
	PL/SQL Large Object (LOB) Data Types
	PL/SQL User-Defined Subtypes
	NULLs in PL/SQL

	Variables
	Variable Declaration in PL/SQL
	Initializing Variables in PL/SQL
	Variable Scope in PL/SQL
	Assigning SQL Query Results to PL/SQL Variables

	Constants
	Declaring a Constant
	The PL/SQL Literals

	Operators
	Arithmetic Operators
	Example:
	Relational Operators
	Example:
	Comparison Operators
	LIKE Operator:
	BETWEEN Operator:
	IN and IS NULL Operators:
	Logical Operators
	Example:
	PL/SQL Operator Precedence
	Example:

	Conditions
	Syntax:
	Flow Diagram:
	Example 1:
	Example 2:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Example:

	Loops
	Syntax:
	Example:
	Syntax:
	Example:
	Syntax:
	Example:
	Reverse FOR LOOP Statement
	Example:
	Labeling a PL/SQL Loop
	The Loop Control Statements
	Syntax:
	Flow Diagram:
	Example:
	The EXIT WHEN Statement
	Syntax:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Restrictions with GOTO Statement

	Strings
	Declaring String Variables
	PL/SQL String Functions and Operators
	Example 1
	Example 2

	Arrays
	Creating a Varray Type
	Example 1

	Procedures
	Parts of a PL/SQL Subprogram
	Creating a Procedure
	Example:
	Executing a Standalone Procedure
	Deleting a Standalone Procedure
	Parameter Modes in PL/SQL Subprograms
	IN & OUT Mode Example 1
	IN & OUT Mode Example 2
	Methods for Passing Parameters
	POSITIONAL NOTATION
	NAMED NOTATION
	MIXED NOTATION

	Functions
	Example:
	Calling a Function
	Example:
	PL/SQL Recursive Functions

	Cursors
	Implicit Cursors
	Example:
	Explicit Cursors
	Declaring the Cursor
	Opening the Cursor
	Fetching the Cursor
	Closing the Cursor
	Example:

	Records
	Table-Based Records
	Cursor-Based Records
	User-Defined Records
	Defining a Record
	Accessing Fields
	Records as Subprogram Parameters

	Exceptions
	Syntax for Exception Handling
	Example
	Raising Exceptions
	User-defined Exceptions
	Example:
	Pre-defined Exceptions

	Triggers
	Benefits of Triggers
	Creating Triggers
	Example:
	Triggering a Trigger

	Packages
	Package Specification
	Package Body
	Using the Package Elements
	Example:
	THE PACKAGE SPECIFICATION:
	CREATING THE PACKAGE BODY:
	USING THE PACKAGE:

	Collections
	Index-By Table
	Example:
	Example:
	Nested Tables
	Example:
	Example:
	Collection Methods
	Collection Exceptions

	Transactions
	Starting an Ending a Transaction
	Committing a Transaction
	Rolling Back Transactions
	Savepoints
	Automatic Transaction Control

	Date & Time
	Field Values for Datetime and Interval Data Types
	The Datetime Data Types and Functions
	Examples:
	The Interval Data Types and Functions

	DBMS Output
	DBMS_OUTPUT Subprograms
	Example:

	Object Oriented
	Instantiating an Object
	Member Methods
	Using Map method
	Using Order method
	Inheritance for PL/SQL Objects:
	Abstract Objects in PL/SQL

