
1

Syllabus

F. Y. B. Sc. (Information Technology)

Paper - III, SEM - III

ADVANCED SQL

Unit - I Structured Query Language :

Writing Basic SQL Select Statements, Restricting and

Sorling Data, Single-Row Functions, Joins (Displaying

Data from Multiple Tables), Aggregating Data using

Group Functions, Subqueries, Manipulating Data,

Creating and Managing Tables, Including Constraints,

Creating Views, Creating other Database Objects

(Sequences, Indexes and Synomyms)

Unit - II Advanced SQL :

Controlling user Access, using SET operators, Data Time

Functions, Enhancements to Group by clause (cube,

Rollup and Grouping), Advanced Subqueries (Multiple

column subqueries, Subqueries in FROM clause, Scalar

and correlated subqueries), WITH Clause, Hierarchical

retrieval.

Unit - III PLSQL :

Introduction, Overview and benefits of PL/SQL,

Subprograms, types of PL/SQL blocks, Simple

Anonymous Block, Identifiers, types of identifiers,

Declarative Section, variables, Scalar Data Types, The %

Type attribute, bind variables, sequences in PL/SQL

expressions, Executable statements, PL/SQL block

syntax, comment the code, deployment of SQL functions

in PL/SQL, Convert Data Types, newted blocks,

operators. Interaction with the oracle server, Invoke

SELECT Statements in PL/SQL, SQL cursor concept,

Data Manipulation in the Server using PL/SQL, SQL

Cursor Attributes to obtain Feedback on DML, Save and

discard transactions.

Unit- IV Control Structures :

Conditional processing using IF statements and CASE

statements, Loop Statement, while loop statement, for

loop statement, the continue statement composite data

types : PL/SQL records, The % ROWTYPE attribute,

insert and update with PL/SQL records, INDEX by tables,

INDEX BY Table Methods, Use INDEX BY Table of

Records, Explicit Cursors, Declare the Cursor, Open the

2

Cursor, Fetch data from the Cursor, Close the Cursor,

Cursor FOR loop, The % NOTFOUND and %

ROWCOUNT Attributes, the FOR UPDATE Clause and

WHERE CURRENT Clause, Exception Handling, Handle

Exceptions with PL/SQL, Trap Predefined and non-

predefined Oracle Server Errors, User - Defined

Exceptions, Propagate Exceptions,

RAISE_APPLICATION_ERROR Procedure.

Unit-V Stored Procedures :

Create a Modularized and Layered Subprogram Design,

the PL/SQL Execution Environment, differences between

Anonymous Blocks and Subprograms, Create, Call, and

Remove Stored Procedures, Implement Procedures

Parameters and Parameters Modes, View Procedure

Information, Stored Functions and Debugging

Subprograms, Create, Call, and Remove a Stored

Function, advantages of using Stored Functions, the

steps to create a stored function, Invoke User-Defined

Functions in SQL Statements, Restrictions when calling

Functions, Control side effects when calling Functions,

View Functions Information, debug Functions and

Procedures, Packages, advantages of Packages,

components of a Package, Develop a Package, enable

visibility of a Package’s Components, Create the Package

Specification and Body using the SQL CREATE

Statement and SQL Developer, Invoke the Package

Constructs, View the PL/SQL Source Code using the

Data Dictionary, Deploying Packages, Overloading

Subprograms in PL/SQL, Use the STANDARD Package,

Use Forward Declarations, Implement Package Functions

in SQL and Restrictions, Persistent State of Packages,

Persistent State of a Package Cursor, Control side effects

of PL/SQL Subprograms, Invoke PL/SQL Tables of

Records in Packages

Unit-VI Dynamic SQL :

The Execution Flow of SQL, Declare Cursor Variables,

Dynamically Executing a PL/SQL Block, Configure Native

Dynamic SQL to Compile PL/SQL Code, invoke

DBMS_SQL Package, Implement DBMS_SQL with a

Parameterized DML Statement, Dynamic SQL Functional

Completeness, Triggers, the Triggers, Create DML

Triggers using the CREATE TRIGGER Statement and

SQL Developer, Identify the Trigger Event Types, Body,

and Firing (Timing), Statement Level Triggers and Row

Level Triggers, Create Instead of and Disabled Triggers,

3

Manage, Test and Remove Triggers. Creating

Compound, DDL and Event Database Triggers,

Compound Trigger Structure for Tables and Views,

Compound Trigger to Resolve the Mutating Table Error,

Comparison of Database Triggers and Stored

Procedures, Create Triggers on DDL Statements, Create

Database-Event and System-Events Triggers, System

Privileges Required to Manage Triggers

Books:

Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and

Associates.

Oracle Database 11g PL/SQL Programming Workbook, ISBN :

9780070702264, By : Michael McLaughlin, John Harper, Tata McGraw-

Hill.

Reference :

Oracle PL/SQL Programming, Fifth Edition By Steven Feuerstein, Bill

Pribyl

Oracle 11g : SQL Reference Oracle press

Oracle 11g : PL/SQL Reference Oracle Press.

Expert Oracle PL/SQL, By : Ron Hardman, Michael McLaughlin, Tata

McGraw-Hill

Oracle database 11g : hands on SQL/PL SQL by Satish Asnani (PHI)

EEE edition

`

4

Unit - I

1
BASIC STRUCTURED QUERY

LANGUAGE – I

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 What is RDBMS?

1.2.1 Concepts of Relational Database

1.3 Introduction to SQL

1.4 What can SQL do?

1.5 SQL Language Elements

1.6 Classification of SQL commands

1.6.1 Data Query Language

1.6.2 Data Definition Language

1.6.3 Data Manipulation Language

1.6.4 Data Control Language

1.6.5 Transaction Control Language

1.7 Creating and Managing Tables

1.7.1 How to create a table?

1.8 Applying Constraints

1.8.1 Classification of Constraints

1.8.2 Primary Key

1.8.3 NOT NULL

1.8.4 UNIQUE

1.8.5 DEFAULT

1.8.6 CHECK

1.8.7 FOREIGN KEY

1.8.8 Adding, Removing and Altering Constraints

1.8.9 Enabling and Disabling Constraints

1.9 Summary

1.10 Review Questions

1.11 Lab Assignment

1.12 Bibliography, References and Further Reading

1.13 Online References

5

1.0 OBJECTIVES

After going through this chapter, you will be able to

 Understand RDBMS

 What SQL can do?

 Classify SQL elements

 Classify SQL Commands

 Understand common data types in SQL

 Create and Manage Tables

 Apply Constraints to Tables

1.1 INTRODUCTION

The amount of information available to us is literally

exploding, and the value of data as an organizational asset is

widely recognized. To get the most out of their large and complex

datasets, users require tools that simplify the tasks of managing the

data and extracting useful information in a timely fashion.

Otherwise, data can become a liability, with the cost of acquiring it

and managing it far exceeding the value derived from it.

A database management system, or DBMS, is software

designed to assist in maintaining and utilizing large collections of

data. The collection of data, usually referred to as database,

contains information relevant to an enterprise. The primary goal of

a DBMS is to provide a way to store and retrieve database

information that is both convenient and efficient.

A data model is a collection of high-level data description
constructs that hide many low-level storage details. A DBMS allows
a user to define the data to be stored in terms of a data model.
Most database management systems today are based on the
relational data model. A relational database consists of a
collection of tables (mathematical concept of relation). A row in a
table represents a relationship among a set of values. Informally, a
table is an entity set, and a row is an entity.

The relational model is very simple and elegant: a database
is a collection of one or more relations, where each relation is a
table with rows and columns. This simple tabular representation
enables even novice users to understand the contents of a

6

database, and it permits the use of simple, high-level languages to
query the data.

1.2 What is RDBMS?

RDBMS stands for Relational Database Management
System. RDBMS is the basis of SQL, and for all modern database
system like MS SQL Server, IBM DB2, Oracle, MySQL, and
Microsoft Access. It is a software system that manages the storage
of data contained in a database. The relational model was first
proposed by Dr. E. F. Codd in 1970. The data in RDBMS is stored
in database objects called tables. A table is a collection of related
data entries and it consists of columns and rows.

1.2.1 Concepts of Relational Database
Relational Database is a structure consisting of a set of

objects related together and data integrity methods which aims in
the efficient storage of electronic data. In other words, it is a place
to store the data, a way to create and retrieve the data, and a way
to make sure that the data is logically consistent. The objects can
be of various types like tables, indexes, queries etc.

1.3 INTRODUCTION TO SQL

SQL stands for “Structured Query Language” and can be
pronounced as “SQL” or “sequel – (Structured English Query
Language)”. It is a query language used for accessing and
modifying information in the database. It has become a Standard
Universal Language used by most of the relational database
management systems (RDBMS). SQL is tied very closely to the
relational model. Few of the SQL commands used in SQL
programming are SELECT Statement, UPDATE Statement,
INSERT INTO Statement, DELETE Statement, WHERE Clause,
ORDER BY Clause, GROUP BY Clause, ORDER Clause, Joins,
Views, GROUP Functions, Indexes etc.

In a simple manner, SQL is a non-procedural, English-like
language that processes data in groups of records rather than one
record at a time. Few functions of SQL are:

 store data

 modify data

 retrieve data

 delete data

 create tables and other database objects

7

The SQL language has several parts:

Data-Definition Language (DDL): The SQL DDL provides

commands for defining relation schemas, deleting relations, and

modifying relation schemas.

Interactive Data-Manipulation Language (DML): The SQL DML

includes a query language based on both the relational algebra and

the tuple relational calculus. It also includes commands to insert

into tuples, delete tuples from, and modify tuples in the database.

View Definition: The SQL DDL includes commands for defining

views.

Transaction Control: SQL includes commands for specifying the

beginning and ending of transactions.

Embedded SQL and Dynamic SQL: Embedded and Dynamic

SQL define how SQL statements can be embedded within general-

purpose programming languages, such as C, C++, Java, PL/I,

Cobol, Pascal, and Fortran.

Integrity: The SQL DDL includes commands for specifying integrity

constraints that the data stored in the database must satisfy.

Updates that violate integrity constraints are disallowed.

Authorization: The SQL DDL includes commands for specifying

access rights to relations and views.

1.4 WHAT CAN SQL DO?

SQL can execute queries against a database

1. SQL can retrieve data from a database

2. SQL can insert records in a database

3. SQL can update records in a database

4. SQL can delete records from a database

5. SQL can create new databases

6. SQL can create new tables in a database

7. SQL can create stored procedures in a database

8. SQL can create views in a database

9. SQL can set permissions on tables, procedures, and views

1.5 SQL LANGUAGE ELEMENTS

The SQL language is subdivided into several language

elements, including:

 Clauses, which are constituent components of statements and

queries.

8

 Expressions, which can produce either scalar values or tables

consisting of columns and rows of data.

 Predicates, which specify conditions that can be evaluated to

SQL three-valued logic (3VL) or Boolean (true/false/unknown)

truth values and which are used to limit the effects of statements

and queries, or to change program flow.

 Queries, which retrieve the data based on specific criteria. This

is the most important element of SQL.

 Statements, which may have a persistent effect on schemata

and data, or which may control transactions, program flow,

connections, sessions, or diagnostics.

 SQL statements also include the semicolon (";") statement

terminator.

 Insignificant whitespace is generally ignored in SQL

statements and queries, making it easier to format SQL code for

readability.

The following table shows the most common data types

Data Type Description

NUMBER Holds numeric data of any precision. The precision
can range from 1 to 38.

CHAR(W) Holds fixed length alphanumeric data up to w
width

VARCHAR2(W) Holds variable length alphanumeric data up to w
width. A varchar2 value can contain up to 4000
bytes of data

DATE DATE is a data type used to store date and time
values in a 7-byte structure

RAW(size) Raw binary data of varying length(size) bytes.
Maximum size is 2000 bytes

TIMESTAMP Timestamp is an extension of the Date data type
that can store date and time data

1.6 CLASSIFICATION OF SQL COMMANDS

In order to learn SQL we will have to learn various

commands or statements supported by SQL language. All the SQL

commands can be broadly classified into five categories as shown

in the figure below.

9

1.6.1 Data Query Language (DQL)

These commands are used to view records from tables. The

actual data in the form of tables is stored onto the hard disk and

DQL commands enable us to view the information/records stored in

the database, for example, using the SELECT command.

1.6.2 Data Definition Language (DDL)

DDL is a subset of SQL commands that allows you to make

changes to the structure of the database. The DDL part of SQL

permits database tables to be created or deleted. It also defines

indexes (keys), specifies links between tables, and imposes

constraints between tables. Table structure refers to the number of

columns and the data types of columns and constraints which can

be applied or revoked as desired, using commands like CREATE,

DROP, ALTER.

1.6.3 Data Manipulation Language (DML)

DML describes the portion of SQL that allows you to

manipulate or control your data. For adding new records, removing

existing records or changing values of existing records we will use

DML statements like INSERT, DELETE, UPDATE.

1.6.4 Data Control Language (DCL)

Database Management Systems are multi user oriented.

Each user has his own assigned area where his data is stored. By

default one user cannot view, modify or delete the information

stored in another user's area. The owner can grant the privilege of

modifying the data owned by him to another user. These

commands control how and to what extent one user can view,

modify and delete information in another user's area using

commands like GRANT, REVOKE.

1.6.5 Transaction Control Language (TCL)

Each operation which is done on database is called a

Transaction. Transaction can be addition of new record,

modification in values of existing records or deletion of existing

records. Each transaction can be done permanently or can be

SQL

DQL DDL DML DCL

TCL

10

undone by using the transaction control statements, like COMMIT,

ROLLBACK, SAVEPOINT.

1.7 CREATING AND MANAGING TABLES

Structured Query Language (SQL) is the language used to

manipulate relational databases. In the relational model data is

stored in structures called relations or tables. A table is the

fundamental building block of a database application. Tables are

used to store data on various entities like employees, products,

customers, orders, sales etc.

There are a few things that one should note before typing and

executing SQL commands:

 Commands may be on a single line, or many lines.

 For the sake of readability, place different clauses on

separate lines and make use of tabs and indents.

 SQL command words cannot be split or abbreviated.

 SQL commands are not case sensitive.

 Place a semicolon(;) at the end of the last clause.

1.7.1 How to create a table?

Data Definition Language statements mentioned in the

previous chapter allows you to make changes to the structure of the

database. The create table statement is used to create a table

object.

Syntax:

CREATE TABLE <tablename>

(<attribute1 name> <data type> (size),

<attribute2 name> <data type> (size),);

For example to create a STUDENT table, the command will be as

follos:

11

CREATE TABLE student

(

rollno char(4),

name varchar2(10),

date_of_birth date,

marks number(3)

);

Rules for creating tables are as follows:

 The name of the table can be of 30 characters at the

maximum.

 Alphabets from A to Z and 0 to 9 are allowed.

 Special characters like under score (_) are allowed.

 SQL reserved keywords like SELECT, WHERE etc are not

allowed.

1.8 APPLYING DATA CONSTRAINTS

To maintain database integrity we need to enforce some rules on

data being stored in a table. There are several ways of controlling

what kind of data can be input into a table. The various

controls/constraints are as follows:

 PRIMARY KEY

 NOT NULL

 UNIQUE

 DEFAULT

 CHECK

 FOREIGN KEY

1.8.1 Classification of Constraints

Constraints can be broadly classified as:

12

 Column Level

 Table Level

Column Level Constraints

When a constraint is applied to a single column then it is

called a Column Level Constraint. This constraint will affect the

values being entered for that particular column only irrespective of

values of other columns.

Table Level Constraints

When a single constraint is applied to more than one column

then it is called Table Level Constraint. These constraints impact

the values being entered for a combination of column values, for

example, salary can never be less than the commission is a table

level constraint.

1.8.2 Primary Key

Primary key can be defined as the single column or

combination of columns which uniquely identify a row in a table, for

example, the rollno column in the “student” table is the primary key.

No two students can have the same rollno. The following are the

features of a primary key:

 A table can have one and only one primary key.

 Primary key implies UNIQUE as well as NOT NULL values,

 UNIQUE implies duplicate values cannot be entered.

 NOT NULL implies value cannot be unknown (NULL) for any

of the records.

 Primary key columns are automatically indexed.

 A Primary Key can contain more than 1 column known as a

Composite Key.

Primary Key = UNIQUE + NOT NULL + Automatic Indexed

An example of Primary key constraint:

CREATE TABLE student

(

13

rollno CHAR(4) PRIMARY KEY,

name VARCHAR2(10),

date_of_birth DATE,

marks NUMBER(3)

);

OR

CREATE TABLE student

(

rollno char(4),

name varchar2(10),

date_of_birth date,

marks number(3),

CONSTRAINT stud_pk PRIMARY KEY (rollno)

);

An example of Composite key constraint:

CREATE TABLE student

(

rollno char(4),

name varchar2(10),

date_of_birth date,

marks number(3),

CONSTRAINT stud_ck PRIMARY KEY (rollno, name)

);

1.8.3 NOT NULL

Specifying NOT NULL as constraint means that NULL

values cannot be inserted for that particular field although duplicate

14

values for that column can be entered. It is a type of Domain

Integrity Constraint.

An example of NOT NULL constraint:

CREATE TABLE student

(

rollno char(4),

name varchar2(10) NOT NULL,

date_of_birth date NOT NULL,

marks number(3)

);

1.8.4 UNIQUE

UNIQUE implies duplicate values for the same field cannot

be entered but NULL values can be inserted for that column. Since

two NULL values cannot be compared, UNIQUE constraint does

not prevent from supplying NULL values. It is a type of Domain

Integrity Constraint.

An example of UNIQUE constraint:

CREATE TABLE student

(

rollno char(4) UNIQUE,

name varchar2(10) NOT NULL,

date_of_birth date NOT NULL,

marks number(3)

);

1.8.5 DEFAULT

15

DEFAULT implies that if we do not specify a value for a

column in the INSERT statement, then the value specified in the

Default clause will get inserted.

An example of DEFAULT constraint:

CREATE TABLE student

(

rollno char(4) UNIQUE,

name varchar2(10) NOT NULL,

date_of_birth date NOT NULL,

marks number(3) DEFAULT 0

);

1.8.6 CHECK

The CHECK constraint allows verifying the values being

supplied against specified conditions. For example, marks cannot

be negative and also cannot exceed the maximum marks (i.e.

marks should be between 0 and 100).

An example of CHECK constraint:

CREATE TABLE student

(

rollno char(4) UNIQUE,

name varchar2(10) NOT NULL,

date_of_birth date NOT NULL,

marks number(3)CHECK (marks >= 0 AND marks <= 100)

);

1.8.7 FOREIGN KEY

The FOREIGN KEY constraint is used to define a foreign

key which represents relationships between tables. The foreign key

is used to enforce referential integrity. Features of foreign key are:

 A foreign key can refer to a primary key.

16

 A table can have multiple foreign keys referring to different

tables for different columns.

 Defining foreign key establishes a PARENT/CHILD relationship

between the two tables.

 Defining foreign key implies two conditions:

◦ We can insert only those records in the CHILD table for

which corresponding records exist in the PARENT table.

◦ We can delete only those records from the PARENT

table for which there are no corresponding records in the

CHILD table.

An example of FOREIGN KEY constraint:

CREATE TABLE stud_detail

(

rollno char(4) PRIMARY KEY,

name varchar2(10) NOT NULL,

address date NOT NULL,

phone_no number(3) UNIQUE NOT NULL,

CONSTRAINT std_fk FOREIGN KEY (rollno)

REFERENCES student (rollno)

);

If you want to delete records from the PARENT table for

which there are corresponding records in the CHILD table then you

need to specify the ON DELETE CASCADE option while defining

the Foreign Key relation. If you do not specify this option then the

database server will not allow you to delete data if other table

references it. If you specify this option then the corresponding

records of the CHILD table will also be deleted with the records

from the PARENT table.

An example of FOREIGN KEY constraint using ON DELETE

CASCADE option:

CREATE TABLE stud_detail

17

(

rollno char(4) PRIMARY KEY,

name varchar2(10) NOT NULL,

address date NOT NULL,

phone_no number(3) UNIQUE NOT NULL,

CONSTRAINT std_fk FOREIGN KEY (rollno)

REFERENCES student (rollno) ON DELETE CASCADE

);

1.8.8 Adding, Removing and Altering Constraints

The constraints we applied at the time of table creation can

also be specified after the table has been created (without

constraints).

CREATE TABLE student

(

rollno char(4),

name varchar2(10),

date_of_birth date,

marks number(3)

);

The above table has been created without any constraints. An

example for adding constraints after table creation:

ALTER TABLE student

ADD PRIMARY KEY (rollno, name);

ALTER TABLE student

ADD CONSTRAINT def_mark marks DEFAULT 0;

Suppose we do not want roll no and name to be the primary key in

the above mentioned table. The constraint can be removed using

18

the ALTER TABLE command. An example for removing

constraints:

ALTER TABLE student

DROP PRIMARY KEY;

1.8.9 Enabling and Disabling Constraints

It is not a good programming practice to remove constraints.

Removing constraints can lead to problems in the table like data

redundancy. Instead of dropping or removing constraints we can

temporarily disable constraints. We can disable constraints when

we need to and then enable the constraints when required.

Consider the following example about the table STUDENT which

has the primary key as ROLL NO. We can disable the primary key

constraint using the DISABLE CONSTRAINT command with the

ALTER TABLE statement and in order to enable the constraint we

need to use the ENABLE CONSTRAINT command with the ALTER

TABLE statement.

CREATE TABLE student

(

rollno char(4),

name varchar2(10),

date_of_birth date,

marks number(3),

CONSTRAINT stud_pk PRIMARY KEY (rollno)

);

Disabling Constraints

ALTER TABLE student DISABLE CONSTRAINT stud_pk;

Enabling Constraints

ALTER TABLE student ENABLE CONSTRAINT stud_pk;

1.9 SUMMARY

19

 A database management system, or DBMS, is software

designed to assist in maintaining and utilizing large

collections of data.

 The collection of data, usually referred to as database,

contains information relevant to an enterprise.

 A relational database consists of a collection of tables.

 Relational Database is a structure consisting of a set of
objects related together and data integrity methods which
aims in the efficient storage of electronic data.

 SQL stands for “Structured Query Language” and is a query
language used for accessing and modifying information in
the database.

 SQL can execute queries against a database to store,
retrieve, modify and delete data.

 SQL commands can be categorized into Data Query
Language (DQL), Data Definition Language (DDL), Data
Manipulation Language (DML), Data Control Language
(DCL) and Transaction Control Language (TCL).

 A table is the fundamental building block of a database
application. Tables are used to store data on various entities
like employees, products, customers, orders, sales etc.

 The CREATE TABLE statement is used to create a table
object.

 The various constraints that can be applied on a table are as
follows:

◦ PRIMARY KEY

◦ NOT NULL

◦ UNIQUE

◦ DEFAULT

◦ CHECK

◦ FOREIGN KEY

 The structure of a table can be changed after its creation
using the ALTER TABLE statement.

 Constraints can also be applied to table after its creation
using the ALTER TABLE statement.

 Constraints can be enabled or disabled using the
ENABLE/DISABLE CONSTRAINT statement.

1.10 REVIEW QUESTIONS

20

(1) What is SQL? What can be done using SQL?
(2) List and Explain the common data types in SQL.
(3) List and Explain the different elements in SQL language.
(4) Explain the parts of SQL language?
(5) Explain the classification of SQL statements?
(6) List the rules for creating a table? How can you create a

table?

(7) List and Explain the different types of constraints with

examples?

(8) Explain the commands used to alter table?

1.11 LAB ASSIGNMENT

1. Create table DEPT with the following columns and constraints

Column name Data type Size Constraint

DEPTNO NUMBER 2 PRIMARY KEY

DNAME VARCHAR2 10 UNIQUE + NOT NULL

LOCATION VARCHAR2 10 UNIQUE + NOT NULL

2. Create table EMPLOYEE with the following columns and
constraints

Column name Data type Size Constraint

EMPNO CHAR 4 PRIMARY KEY

ENAME VARCHAR2 10 NOT NULL

JOB VARCHAR2 10

MGR CHAR 4

HIREDATE TIMESTAMP NOT NULL

GENDER CHAR 1 'M' OR 'F' ONLY

SAL NUMBER 8,2 DEFAULT 0

COMM NUMBER 8,2 DEFAULT 0

DEPTNO NUMBER 2 FOREIGN KEY REFERRING

TO DEPTNO of DEPT table

3. Insert 5 records in both the tables.

admin
Typewriter

admin
Typewriter

admin
Typewriter

admin
Typewriter

admin
Typewriter

admin
Typewriter

21

4. Add table level constraint such that commission cannot be
greater than 30% of salary after the table has been created.
Assign the constraint name COMM_30_SAL.

5. Add new constraint with the name DEPT_CHK_LOCATION
to DEPT table such that LOCATION can be any one of the
following cities MUMBAI, PUNE, BENGALURU, LONDON,
SAN FRANSISCO only.

6. Remove the UNIQUE constraint from the LOCATION
column.

1.12 BIBLIOGRAPHY, REFERENCES AND FURTHER
READING

 Database Management Systems, Third Edition by
RamaKrishnan, Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz,
Korth, Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael
McLaughlin, Tata McGraw-Hill

 SQL, PL/SQL The programming language of Oracle,
Bayross Ivan, BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and
Navathe B. Shamkant, Pearson

1.13 ONLINE REFERENCES

Wikipedia Link
http://en.wikipedia.org/wiki/SQL

Oracle Database PL/SQL language Reference 11g Release 2 (11.2), part

number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dyn.htm

22

2

BASIC STRUCTURED QUERY

LANGUAGE – II

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Basic Data Retreival

2.2.1 Column Aliases

2.2.2 Duplicate Rows

2.3 Restricting and Sorting Data

2.3.1 Ordering Data

2.4 Dual Table

2.5 Single Row Functions

2.5.1 Numeric Functions

2.5.2 Character Functions

2.5.3 DateTime Functions

2.5.4 Conversion Functions

2.6 Joins

2.6.1 Inner Equi Join

2.6.2 Inner Non-Equi Join

2.6.3 Self Join

2.6.4 Outer Joins

2.6.5 Left Outer Join

2.6.6 Right Outer Join

2.6.7 Full Outer Join

2.6.8 Cartesian Product

2.7 Summary

2.8 Review Questions

2.9 Lab Assignment

2.10 Bibliograpy, References and Further Reading

2.11 Online References

23

2.0 OBJECTIVES

At the end of this chapter, you will be able to

 Retreive data using SELECT statement
 Restrict and Sort Data
 Manipulate Data using Single Row functions
 Display Data from Multiple Tables using Joins

2.1 INTRODUCTION

In the previous chapter, we created tables using CREATE

TABLE statement and managed tables. In this chapter, we will

manipulate data from a single table and also retreive data and join

multiple tables.

2.2 BASIC DATA RETREIVAL

The SELECT statement retreives data from the database

and returns in the form of query results.

The syntax is:

SELECT [ALL/DISTINCT] select-item

FROM table-specification

[WHERE search-condition]

[GROUP BY grouping-column]

[HAVING search-condition]

[ORDER BY sort-specification]

The SELECT and FROM clauses are required and remaining four

clauses are optional.

SELECT statement forms a part of the Data Query Language

(DQL). SELECT statement is used to query the database in order

to find data. SELECT is the most complex statement in SQL, with

optional keywords and clauses that include:

 The FROM clause which indicates the table(s) from which
data is to be retrieved. The FROM clause can include
optional JOIN subclauses to specify the rules for joining
tables.

24

 The WHERE clause includes a comparison predicate, which
restricts the rows returned by the query. The WHERE clause
eliminates all rows from the result set for which the
comparison predicate does not evaluate to true.

 The GROUP BY clause is used to project rows having
common values into a smaller set of rows. GROUP BY is
often used in conjunction with SQL aggregation functions or
to eliminate duplicate rows from a result set. The WHERE
clause is applied before the GROUP BY clause.

 The HAVING clause includes a predicate used to filter rows
resulting from the GROUP BY clause. Because it acts on the
results of the GROUP BY clause, aggregation functions can
be used in the HAVING clause predicate.

 The ORDER BY clause identifies which columns are used to
sort the resulting data, and in which direction they should be
sorted (options are ascending or descending). Without an
ORDER BY clause, the order of rows returned by an SQL
query is undefined.

To illustrate the SQL commands in this chapter we consider the

records in the following tables

Student Table:

Rollno Name Course_no Grade

201 Rohit SC01 A

209 Raj SC01 B

325 Rita COM02 A

355 Parag SC02 A

365 Mohini SC03 C

Stud_details Table:

Rollno Name Age Address

201 Rohit 25 MG road, Goregaon

209 Raj 27 Thakur City, Kandivali

310 Manisha 24 Vasai(W)

325 Rita 26 Borivali(W)

355 Parag 23 Thane(E)

365 Mohini 22 Aarey Colony, Goregaon

25

Course Table:

Course_no Course_name Major

SC01 B.Sc IT Information Technology

SC02 B.Sc CS Computer Science

SC03 B.Sc Maths Mathematics

COM01 B.Com Accounts

COM02 B.M.S Management Studies

We need to execute the following queries

 To display all student records from table student
SELECT * FROM Student;

 To display name and address of the Students
SELECT Name, Address FROM Stud_Details;

 To display all course details
SELECT * FROM Course;

2.2.1 Column Aliases

The column headings are by default based on the column

name, but sometimes we may want a customized column heading.

It can be done using Column Aliases.

Syntax:

SELECT <column name1> “column alias1”, <column

name2> “column alias2”, <column name3> “column alias3”......

FROM <tablename>;

Rules for declaring Column Aliases

10.Column aliases must not contain any whitespace.
11.The case is ignored.
12.The Alias must be enclosed in double quotes.

2.2.2 Duplicate Rows

Many columns in a table can contain duplicate data. When

querying data the duplicate data can come more than once in the

query solution. For example, in an EMPLOYEE table the names of

a few employees can same or repeated. Duplicate rows can be

avoided by simply using the keyword DISTINCT.

26

Syntax:

SELECT DISTINCT <column name> FROM <table name>;

For Example:

SELECT DISTINCT Course_no, Name “Student Name”

FROM Student;

2.3 RESTRICTING AND SORTING DATA

A simple SELECT statement will return all rows from a

particular table, but if we need to list a record on the basis of some

conditions we need to use the WHERE clause.

Rules of using a WHERE clause:

 The WHERE clause MUST appear after the FROM clause.
 WHERE clause consists of the keyword WHERE followed by

a search condition that specifies the rows to be retrieved.
 Character strings and date values are enclosed with single

quote.
 Character values are case sensitive and date values are

format sensitive.
 An column alias cannot be used in the WHERE clause.

Consider the following queries

 To display all records of students whose grade = 'A'
SELECT * FROM Student WHERE Grade = 'A';

 To display records of students who have enrolled for course
'SC02'
SELECT * FROM Student

WHERE Course_no = 'SC02';

Apart from using the WHERE clause for equality conditions, we can

use it for other conditions like:

Comparison Test (<>, <, >, <=, >=)

Compares the value of one expression to the value of

another expression.

Syntax: SELECT <list> FROM <table name> WHERE <column

name> comparison-operator <value>;

27

Range Test (BETWEEN)

Tests whether the value of an expression falls within a

specified range of values.

Syntax: SELECT <list> FROM <table name> WHERE <column

name> BETWEEN <lower-limit> AND <higher-limit>

Set Membership Test (IN)

Tests whether a data value matches one of a list of target

values.

Syntax: SELECT <list> FROM <table name> WHERE <column

name> IN (list of constants separated by comma);

NULL Value Test (IS NULL)

Used to check explicitly for NULL values in a search

condition.

Syntax: SELECT <list> FROM <table name> WHERE <column

name> IS NULL;

Pattern Matching Test (LIKE)

Checks to see whether the data value in a column matches

a specified pattern. The pattern is a string that may include one or

more wildcard characters.

Symbol Represents

% It matches any sequence of zero or more characters.

_ The under score matches any single character.

[] Any single character within the specified range ([a-f]).

[^] Any single character not within the specified range ([^a-f]).

2.3.1 Ordering Data

When SELECT statement is executed, the order of rows

returned in the output is undefined. To define a specific order in the

output, we need to use the ORDER BY clause with the SELECT

statement. Using the ORDER BY clause, records can be arranged

28

in a specified sequence may be alphabetically or by value. The

ORDER BY clause needs to be added to the end of the SELECT

statement.

Syntax: SELECT <list> FROM <table name> ORDER BY <column

name> [ASC | DESC]

2.4 DUAL TABLE

The Dual table is a special one-row table present by default

in all Oracle database installations. It is suitable for use in selecting

a pseudo-column such as SYSDATE or USER. The table has a

single VARCHAR2(1) column called DUMMY that has a value of

“X”. The Dual table can also be used to understand the functioning

of various single row functions. In the next section we will learn

about single row functions using the DUAL table.

2.5 SINGLE ROW FUNCTIONS

Single row functions, as the name suggests, operates on

single row and returns a single result row for every row of a queried

table. These functions can appear in SELECT lists, WHERE

clause, and other SQL statements. There are various types of

single row functions as shown in the diagram below.

29

2.5.1 Numeric Functions:

Numeric functions accept numeric values as input and return

numeric values as output.

ABS: The ABS function calculates the absolute value of an

expression. Since, the absolute value of a real number is its

numeric value without regard to its sign (for example, 3 is the

absolute value of both 3 and -3), this function always returns a

positive value.

Syntax: ABS(expression)

Usage: SELECT ABS (expression/column name) FROM <table

name>;

CEIL: The CEIL function returns the smallest whole number greater

than or equal to a specified number.

Syntax: CEIL(n)

Usage: SHOW CEIL(15.7);

RESULT: 16

FLOOR: The FLOOR function returns the largest whole number

equal to or less than a specified number.

Syntax: FLOOR(n)

Usage: SHOW FLOOR(15.7);

RESULT: 15

ROUND: When a number is specified as an argument, the ROUND

function returns the number rounded to the nearest multiple of a

second number you specify or to the number of decimal places

indicated by the second number.

Syntax: ROUND(number_exp, roundvalue)

Usage: SHOW ROUND(2/3, .1);

RESULT: 0.70

TRUNC: When you specify a number as an argument, the

TRUNCATE function truncates a number to a specified number of

decimal places.

Syntax: TRUNC (number, truncvalue)

Usage: SHOW TRUNC (15.79, 1);

RESULT: 15.7

30

2.5.2 Character Functions:

Character functions accept character values as input and

can return character or numeric values as output.

LOWER: The LOWER function converts all alphabetic characters in

a text expression into lowercase.

Syntax: LOWER(text-expression)

UPPER: The UPPER function converts all alphabetic characters in

a text expression into uppercase.

Syntax: UPPER (text-expression)

CONCAT: CONCAT returns char1 concatenated with char2. Both

char1 and char2 can be any of the data types CHAR, VARCHAR2,

NCHAR, NVARCHAR2, CLOB, or NCLOB. The string returned is in

the same character set as char1. Its data type depends on the data

types of the arguments.

Syntax: CONCAT (char1, char2)

SUBSTR: The SUBSTR function return a portion of char, beginning

at character position, substring_length characters long.

Syntax: SUBSTR (char, position, substring_length)

LENGTH: The LENGTH functions return the length of char.

Syntax: LENGTH (char)

2.5.3 DateTime Functions:

DateTime functions operate on date, timestamp and interval

values.

CURRENT_DATE: CURRENT_DATE returns the current date in

the session time zone, in a value in the Gregorian calendar of data

type DATE.

Syntax: SELECT CURRENT_DATE FROM dual;

CURRENT_TIMESTAMP: CURRENT_TIMESTAMP returns the

current date and time in the session time zone, in a value of data

type TIMESTAMP WITH TIME ZONE.

31

Syntax: SELECT CURRENT_TIMESTAMP FROM dual;

Note: DateTime Functions have been covered in more detail in

later chapters.

2.5.4 Conversion Functions:

Conversion function converts a value from one datatype to

another datatype.

TO_CHAR: This function converts number or date data type to

character data type.

Syntax: TO_CHAR (value, [format mask])

TO_DATE: This function converts string data type to date data

type.

Syntax: TO_DATE (string, [format mask])

TO_NUMBER: This function converts string data type to number

data type.

Syntax: TO_NUMBER (string, [format mask])

Note: For more information about different functions and the

various categories of functions please refer to the Oracle

Documentation available on the Oracle web site.

2.6 JOINS

Till now we have been selecting records from a single table

at a time. However, in real life we do not work only on a single table

but we need to select columns from two or more tables at a time for

a single query. In order to combine two or more tables for a single

query we have to use a concept called “JOIN” to acheive the

desired result.

32

A

Joins can be classified as shown in the figure.

2.6.1 INNER EQUI JOIN

When two tables are joined using the EQUAL TO operator

then that join is called Inner Equi Join.

2.6.2 INNER NON-EQUI JOIN

When two tables are joined using any comparison operator

(<, >, <=, >=, !=) other than EQUAL TO operator then that join is

called Inner Non-Equi Join.

Example for Inner Equi Join

We want to display the course_name and major subject alongwith

the name and rollno of the student from the tables mentioned

above as reference.

SELECT student.rollno, student.name, course.course_name,

course.major

FROM student, course

JOIN

INNER CARTESIAN PRODUCT

OUTER

EQUI NON-EQUI

LEFTRIGHT FULL

A Inner

Join B

B

33

WHERE student.course_no = course.course_no;

Rollno Name Course_name Major

201 Rohit B.Sc IT Information Technology

209 Raj B.Sc IT Information Technology

325 Rita B.M.S Management Studies

355 Parag B.Sc CS Computer Science

365 Mohini B.Sc Maths Mathematics

Notice the “WHERE” clause specifying the join of two tables based

on the matching course_no column is known as the JOIN condition.

The Join condition may involve more than one column.

Above query can also be written as

SELECT student.rollno, student.name, course.course_name,

course.major

FROM student INNER JOIN course

ON student.course_no = course.course_no;

Aliasing

Aliasing is the process whereby we can assign a short name

to the tables being joined and use those alias names for preceding

the column names. The above given Inner Equi Join can be written

in the following manner:

SELECT s.rollno, s.name, c.course_name, c.major

FROM student s, course c

WHERE s.course_no = c.course_no;

Example for Inner Non-Equi Join

We want to display the course_name and major subject alongwith

the name and rollno of the student whose age is greater than 25

from the tables mentioned above as reference.

34

SELECT s.rollno, s.name, c.course_name, c.major

FROM student s, course c

WHERE s.course_no = c.course_no AND s.age > 25;

2.6.3 Joining a Table to itself using Self Join

When a table is joined with its own then it is called “Self-

join”. Although self joins are rare, some queries are best solved

using self joins. In a self join instead of duplicating the table, SQL

lets you refer to it by a different table alias.

Example of Self Join

SELECT s1.rollno, s1.name, s2.age, s2,address

FROM stud_details s1, stud_details s2

WHERE s1.rollno = s2.rollno;

Note: Although the same table has been used, SQL considers them

as two different tables because separate aliases have been used.

2.6.4 Outer Joins

An outer join extends the result of an inner join. An outer join

returns all rows that satisfy the join condition and also returns some

or all of those rows from one table for which no rows from the other

satisfy the join condition.

Outer Joins can be classified as

(9) Left Outer Join
(10) Right Outer Join
(11) Full Outer Join

2.6.5 LEFT OUTER JOIN

A query that performs a join on two tables A and B, and

returns all rows from table A and only matching rows from table B is

Rollno Name Course_name Major

209 Raj B.Sc IT Information Technology

325 Rita B.M.S Management Studies

35

called as LEFT OUTER JOIN. The result set contains all rows from

the first or the left table and only matching records from the second

table.

Syntax:

SELECT <list>

FROM <table name1> LEFT OUTER JOIN <table name2>

ON JOIN CONDITION

Example for Left Outer Join

Suppose we want to display the list of names and addresses of all

students alongwith their course_no and grade.

SELECT sd.rollno, sd.name, sd.address, s.course_no, s.grade

FROM stud_details st LEFT OUTER JOIN student s

ON sd.rollno = s.rollno;

Rollno Name Address Course_no Grade

201 Rohit MG road, Goregaon SC01 A

209 Raj Thakur City, Kandivali SC01 B

310 Manisha Vasai(W) - -

325 Rita Borivali(W) COM02 A

355 Parag Thane(E) SC02 A

365 Mohini Aarey Colony, Goregaon SC03 C

In the above result, all columns from the stud_details table have

been listed and only matching columns from the student table have

been listed.

Table

A
Table

B

36

2.6.6 RIGHT OUTER JOIN

A query that performs a join on two tables A and B, and

returns all rows from table B and only matching rows from table A is

called as RIGHT OUTER JOIN. The result set contains all rows

from the second or the right table and only matching records from

the first table.

Syntax:

SELECT <list>

FROM <table name1> RIGHT OUTER JOIN <table name2>

ON JOIN CONDITION

Example for Right Outer Join

Suppose we want to display the list of names of all students

alongwith their course_name and major subject.

SELECT s.rollno, s.name, c.course_no, c.course_name, c.major

FROM student s RIGHT OUTER JOIN course c

ON s.course_no = c.course_no;

Rollno Name Course_no Course_name Major

201 Rohit SC01 B.Sc IT Information Technology

209 Raj SC01 B.Sc IT Information Technology

325 Rita COM02 B.M.S Management Studies

355 Parag SC02 B.Sc CS Computer Science

365 Mohini SC03 B.Sc Maths Mathematics

- - COM01 B.Com Accounts

Table

A

Table

B

37

In the above result, all columns from the course table have been

listed and only matching columns from the student table have been

listed.

2.6.7 FULL OUTER JOIN

A query that performs a join on two tables A and B, and

returns all rows from table A and B alonwith the non-matching rows

is called as FULL OUTER JOIN. The result set contains all rows

from both the tables.

Syntax:

SELECT <list>

FROM <table name1> FULL OUTER JOIN <table name2>

ON JOIN CONDITION

2.6.8 CARTESIAN PRODUCT

A join in which each record from table 1 gets associated with

each and every record of table 2 is called as Cartesian Product. A

Cartesian product always generates many rows and is rarely

useful. For example, the Cartesian product of two tables, each with

100 rows, has 10,000 rows.

Syntax:

SELECT <list>

FROM <table name1>, <table name2>

Note: In a cartesian product, no WHERE clause is used. Cartesian

Product can also be called as CROSS JOIN.

Table

A

Table

B

38

2.7 SUMMARY

 The SELECT statement retreives data from the database and
returns in the form of query results.

 Duplicate rows can be avoided by simply using the keyword
DISTINCT.

 We need to use the WHERE clause in order to list a record on
the basis of some conditions.

 WHERE clause can be used for

◦ Equality conditions

◦ Comparison Test

◦ Range Test

◦ Set Membership Test

◦ NULL Value Test

◦ Pattern Matching Test

 To define a specific order in the output, we need to use the
ORDER BY clause with the SELECT statement.

 Single row functions operate on a single row and returns a
single result row for every row of a queried table.There are
various types of single row functions

◦ Numeric Functions

◦ Character Functions

◦ DateTime Functions

◦ Conversion Functions

 In order to combine two or more tables for a single query we
have to use a concept called “JOIN” to acheive the desired
result.

 Joins can be classified as

◦ Inner - Equi & Non-Equi

◦ Self

◦ Outer - Left, Right, & Full

◦ Cartesian Product

39

2.8 REVIEW QUESTIONS

 Explain the Where clause. List and explain the conditions under
which you can use it.

 What is a single row function? Explain and give examples.

 What is a join? Explain the various categories of joins that can
be used to join two tables?

2.9 LAB ASSIGNMENT

1. Create a CUSTOMER table with the following columns and constraints

Column name Data type Size Constraint

CUSTOMER_ID CHAR 6 PRIMARY KEY. MUST
BEGIN WITH 'C'

CUSTOMER_NAME VARCHAR2 20 NOT NULL

ADDRESS VARCHAR2 20 UNIQUE

CITY VARCHAR2 20

PINCODE NUMBER 6

STATE VARCHAR2 20

BALANCE_DUE NUMBER 8,2

2. Create a PRODUCT table with the following columns and

constraints

Column name Data type Size Constraint

PRODUCT_CODE CHAR 6 PRIMARY KEY

PRODUCT_NAME VARCHAR2 20 UNIQUE

QTY_AVAIL NUMBER 5

COST_PRICE NUMBER 8,2

SELLING_PRICE NUMBER 8,2

40

3. Create a ORDER table with the following columns and constraints

Column name Data type Size Constraint

ORDER_NO CHAR 6

ORDER_DATE TIMESTAMP

CUSTOMER_ID CHAR 6

PRODUCT_CODE CHAR 6

QUANTITY NUMBER 5

PRIMARY KEY = ORDER_NO + ORDER_DATE +

CUSTOMER_ID + PRODUCT_CODE

 Insert 5-10 records in all the tables.

 Apply UNIQUE constraint on CUSTOMER_ID+
PRODUCT_CODE on the ORDER table.

 Define a foreign key on CUSTOMER_ID of ORDER table
referring to CUSTOMER_ID of CUSTOMER table.

 Define a foreign key on PRODUCT_CODE of ORDER table
referring to PRODUCT_CODE of PRODUCT table.

 List the customer names whose balance due is more than
4000/-.

 For all products display the product name along with Net Profit
as Selling price – Cost price.

 Calculate the profit earned on each order.

 Display the orders placed during 2008.

[Hint: TO_CHAR(ORDER_DATE, 'YYYY') = '2008')

 Arrange the customers first by STATE and then by NAME.

 Display the customers from CUSTOMER table such that the
customer with maximum due balance is displayed at the top.

 Find out the product names and their quantity which have been
delivered in the month of February.

 Find the product name, customer name and total quantity
purchased by various customers.

 Display the total sale amount and quantity for each customer.
The report should display customer name instead of
customer id.

41

2.10 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Database Management Systems, Third Edition by
RamaKrishnan, Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz,
Korth, Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael
McLaughlin, Tata McGraw-Hill

 SQL, PL/SQL The programming language of Oracle, Bayross
Ivan, BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and
Navathe B. Shamkant, Pearson

2.11 ONLINE REFERENCES

Wikipedia Link

http://en.wikipedia.org/wiki/SQL

Oracle Database PL/SQL language Reference 11g Release 2

(11.2), part number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dy

n.htm

42

3

ADVANCED QUERIES AND DATABASE

OBJECTS

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Aggregate Functions

3.3 Group by Having Clause

3.3.1 Comparing Having clause and where clause

3.4 Creating Other Database Objects

3.4.1 Views

3.4.1.1 Classification of Views

3.4.1.2 Updateable Views

3.4.1.3 Non-updateable Views

3.4.2 Indexes

3.4.3 Sequences

3.4.4 Synonyms

3.5 Sub queries

3.5.1 Sub query in DDL and DML commands

3.6 Summary

3.7 Review Questions

3.8 Lab Assignment

3.9 Bibliography, References and Further Reading

3.10 Online References

3.0 OBJECTIVES

At the end of this chapter you will be able to:

 Aggregate Data using Group Functions
 Aggregate Data using Group By Having clause
 Create Database Objects like Views, Sequences,

Indexes and Synonyms
 Use Subqueries

43

3.1 INTRODUCTION

In the previous chapter, you were introduced to scalar

(single row) functions, which operate on a single value and return a

single value. In this chapter, you'll learn how to code queries that

summarize data.

3.2 AGGREGATE FUNCTIONS

Aggregate functions operate on a series of values and return

a single summary value. Aggregate functions allow you to do jobs

like calculate averages, summarize totals, or find the highest value

for a given column. Aggregate functions can appear in select lists

and in ORDER BY and HAVING clauses. They are commonly used

with the GROUP BY clause in a SELECT statement, where the

rows of a queried table are divided into groups.

Many (but not all) aggregate functions that take a single argument

accept these clauses:

 DISTINCT – causes an aggregate function to consider only
distinct values of the argument expression.

 ALL – causes an aggregate function to consider all values,
including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL

average is 1.5. If you specify neither, then the default is ALL. Null

values are always excluded from these functions.

The table given below presents the syntax of the most common

aggregate functions.

Syntax Description

AVG ([ALL | DISTINCT] expression) Returns the average of non-

null values in the expression.

SUM ([ALL | DISTINCT] expression) Returns the total of non-null

values in the expression.

MIN ([ALL | DISTINCT] expression) Returns the lowest non-null

value in the expression.

MAX ([ALL | DISTINCT] expression) Returns the highest non-null

value in the expression.

44

COUNT ([ALL | DISTINCT]

expression)

Returns the number of non-

null values in the expression.

COUNT(*) Returns the number of rows

selected by the query.

Since the purpose of these functions are self-explanatory, we'll focus

mainly on how to use them.

Assume records in the EMP table as shown below.

EMPNO ENAME HIREDATE DEPTNO GENDER SALARY COMM

111 Satish 19-DEC-2008 10 M 10,000 1000

222 Rashmi 01-JAN-1987 20 F 8000 550

333 Rishi 05-JUN-1976 10 M 7000 450

444 Anil 16-APR-1967 10 M 12,000 2000

555 Anita - 30 F 8000 1000

666 Nilesh 20-MAY-1987 20 M 13,000 -

777 Ruchi 11-JUN-2000 30 F 5000 -

888 Sarika - 20 F 4000 -

 Find the number of distinct departments from emp table.
SELECT COUNT(DISTINCT deptno) FROM emp;

Result:

COUNT(DISTINCT deptno)

3

45

 Find the number of employees in the emp table.
SELECT COUNT(*) FROM emp;

Result:

COUNT(*)

8

 Find the total salary and the average commission from the emp
table.

SELECT SUM(salary), AVG(comm) FROM emp;

Result:

SUM(salary) AVG(comm)

67000 1000

3.3 GROUP BY HAVING CLAUSE

GROUP BY clause forms groups on the specified columns. The

GROUP BY clause is used alongwith the aggregate functions to retreive

data grouped according to one or more columns. The group by clause

should contain all the columns to be displayed except those used

alongwith the aggregate functions. The GROUP BY clause groups rows

but does not guarantee the order of the result set. To order the groupings,

use the ORDER BY clause.

For example,

 Display the number of employees from each department.
SELECT deptno, count(*)

FROM emp

GROUP BY deptno;

DEPTNO COUNT(*)

10 3

30 2

20 3

 Display department wise total salary from the emp table.
SELECT deptno, sum(salary)

FROM emp

46

GROUP BY deptno;

DEPTNO SUM(salary)

10 29,000

30 13,000

20 25,000

The HAVING clause to restrict the groups of returned rows to

those groups for which the specified condition is TRUE. In other words,

the HAVING clause is used to filter the records which a GROUP BY

clause returns. This is similar to the WHERE clause but is used with the

GROUP BY clause. The WHERE clause cannot be used with the GROUP

BY clause.

For example,

(12) Display department wise total salary from the emp table such that
only those departments are displayed where the total salary is
greater than 20,000.

SELECT deptno, sum(salary)

FROM emp

GROUP BY deptno

HAVING SUM(salary) > 20000;

DEPTNO SUM(salary)

10 29,000

20 25,000

(13) Display the number of employees from each department where
the number of employees is equal to 2.

SELECT deptno, count(empno) “empcount”

FROM emp

GROUP BY deptno

HAVING COUNT(empno) = 2;

DEPTNO EMPCOUNT

30 2

47

3.3.1 Comparing HAVING clause and WHERE clause

A WHERE clause in a SELECT statement that uses grouping
& aggregates, the search condition is applied before rows are
grouped and aggregates are calculated. That way, only rows that
satisfy the condition are grouped. A HAVING clause in a SELECT
statement that uses grouping & aggregates, the search condition is
applied after rows are grouped and aggregates are calculated. That
way, only groups that satisfy the condition are included in the result
set.

A WHERE clause can refer to any column in the table. A
HAVING clause can only refer to a column included in the SELECT
clause.

A WHERE clause cannot contain aggregate functions.
Aggregate functions can only be coded in the HAVING clause.

3.4 CREATING OTHER DATABASE OBJECTS

SQL allows you to create various database objects other than

table like views, sequences, indexes, synonyms. We will understand

these different database objects in this section.

Assume table PRODUCT with the following records

product_id product_name company_name unit_price

100 Shampoo Pantene 180

101 Deospray Denim 400

102 Tooth paste Colgate 150

103 Soap Lux 75

104 Hair gel Laureal 300

48

Assume table ORDER with the following records

order_id product_id total_units Customer

O1 101 30 Lifestyle

O2 101 5 Shoppers stop

O3 103 25 Spencer

O4 101 10 Food bazaar

O5 103 200 Big bazaar

3.4.1 VIEWS

A view is a logical representation of one or more tables. In

essence, a view is a stored query. A view derives its data from the

tables on which it is based,called base tables. Base tables can be

tables or other views. All operations performed on a view actually

affect the base tables. You can use views in most places where

tables are used. You can query, insert, update and delete from

views. Views can be handled as any other table but they do not

occupy any space.

Unlike a table, a view is not allocated storage space, nor

does a view contain data. Rather, a view is defined by a query that

extracts or derives data from the base tables referenced by the

view. Because a view is based on other objects, it requires no

storage other than storage for the query that defines the view in the

data dictionary.

Benefits of using Views

Views enable you to tailor the presentation of data to different types

of users. Views are often used to:

 Provide an additional level of table security by restricting
access to a predetermined set of rows or columns of a table.

49

 Hide data complexity.

For example, a single view can be defined with a join, which
is a collection of related columns or rows in multiple tables.
However, the view hides the fact that this information
actually originates from several tables. A query might also
perform extensive calculations with table information. Thus,
users can query a view without knowing how to perform a
join or calculations.

 Present the data in a different perspective from that of the
base table.

For example, the columns of a view can be renamed without
affecting the tables on which the view is based.

 Isolate applications from changes in definitions of base
tables.

For example, if the defining query of a view references three
columns of a four column table, and a fifth column is added
to the table, then the definition of the view is not affected,
and all applications using the view are not affected.

3.4.1.1 Classification of Views

Views can be classified as updateable views and non-updateable
views.

3.4.1.2 Updateable Views

By updateable we mean to say that one can insert, update
and delete records from the view. Actually all the DML operations
are performed on the base table.

View with the following characteristics is called an
updateable view.

 It is created from a single table.

 It includes all PRIMARY KEYS and NOT NULL columns of
the base table.

 Aggregate functions like SUM, AVG have not been used.

 It should not have DISTINCT, GROUP BY, HAVING
clauses.

 It must not use constants, strings or value expressions like
salary * 2.

 It must not any function calls (e.g. RPAD, SUBSTR, etc.).

 If a view is defined from another view then that view must
also be updateable.

3.4.1.3 Non-updateable Views

50

Non-updateable means we cannot insert, update and delete
records from that view.

View with the following characteristics is called a non-

updateable view.

7. It is created from more than one table.

8. It has DISTINCT, GROUP BY, HAVING clause. Even if
view is derived from a single table but contains any of
these clauses then it is not updateable.

9. It does not include all the PRIMARY KEYS and NOT NULL
columns of base tables.

CREATING VIEWS

Syntax:

CREATE OR REPLACE VIEW <view name> AS

(SELECT query)

[WITH READ ONLY CONSTRAINT <constraint name>];

Create a view showing the details of the products which have been

ordered by the customers.

CREATE OR REPLACE VIEW prod_ordered AS

SELECT product_name, company_name, total_units

FROM product INNER JOIN order

ON product.product_id = order.product_id;

To see the details of the products ordered

SELECT * FROM prod_ordered

product_name company_name total_units

Deospray Denim 30

Deospray Denim 5

Soap Lux 25

Deospray Denim 10

Soap Lux 200

51

VIEW WITH READ ONLY CONSTRAINT

The WITH READ ONLY option allows the user to create a

read-only view. You cannot use the DELETE, INSERT or UPDATE

commands to modify data for the view.

To create a read only view “prodreadonly” for all products in the

product table which have a unit_price more than 100.

CREATE or REPLACE VIEW prodreadonly AS

SELECT * FROM product WHERE unit_price > 100

WITH READ ONLY CONSTRAINT view_no;

Dropping VIEWS

To remove views we use the command DROP VIEW. You can

change the definition of a view by dropping and re-creating it. If you

delete a view, you can no more access the virtual tables based on

the view.

Syntax:

DROP VIEW <view name>

3.4.2 INDEXES

Index is an object which can be defined as the ordered list of

values of a column or combination of columns used for faster

searching and sorting of data. An index speeds up joins and

searches by providing a way for a database management system to

go directly to a row rather than having to search through all the

rows until it finds the one you want. By default, indexes are created

for primary keys and unique constraints of a table. However,

creating indexes must be avoided on columns that are updated

frequently since this slows down insert, update and delete

operations.

Creating Indexes

To create an index, you need to use the CREATE INDEX

command. In addition, you can use the UNIQUE keyword to specify

that an index contains only unique values.

Syntax:

52

CREATE [UNIQUE] INDEX index_name

ON table_name (column_name1 [ASC | DESC] [, column_name2

[ASC | DESC]]......)

Removing Indexes

To remove or delete an index, we need to use the DROP INDEX

command.

Syntax:

DROP INDEX <index name>

3.4.3 SEQUENCES

SEQUENCE is a type of database object which can be used to

generate numbers in a sequence. This can be used to generate

values for primary keys.

Create Sequence

Sequences can be created using the CREATE SEQUENCE

command which has the following syntax:

CREATE SEQUENCE <sequence name>

START WITH <integer-value>

INCREMENT BY <integer-value>

MAXVALUE <integer-value> OR NOMAXVALUE

MINVALUE <integer-value> OR NOMINVALUE

CYCLE OR NOCYCLE

CACHE OR NOCACHE

ORDER OR NOORDER

START WITH <integer-value>: specifies the 1st sequence number

to be generated.

INCREMENT BY <integer-value>: The integer number by which

sequence number should be incremented for generating the next

number. If it is positive then values are ascending and if it is

negative then values are descending. The default value is 1.

53

MAXVALUE <integer-value>: If the increment value is positive then

MAXVALUE determines the maximum value up to which the

sequence numbers will be generated.

NOMAXVALUE: Specifies the maximum value of 10^27 for an

ascending sequence or -1 for a descending sequence.

MINVALUE <integer-value>: If the increment value is negative then

MINVALUE determines the minimum value up to which the

sequence numbers will be generated.

NOMINVALUE: Specifies the minimum value of 1 for an ascending

sequence or -10^26 for a descending sequence.

CYCLE: Causes the sequences to automatically recycle to

minvalue when maxvalue is reached for ascending sequences; for

descending sequences, it causes to recycle from minvalue back to

maxvalue.

NOCYCLE: Sequence numbers will not be generated after

reaching the maximum value for ascending sequences or minimum

value for descending sequences.

CACHE: Specifies how many values are pre-allocated in buffers for

faster access. Default value is 20.

NOCACHE: Sequence numbers are not pre-allocated.

ORDER: Generates the number in a serial order.

NOORDER: Generates the number in a random order.

Initializing and Accessing Sequence

A sequence needs to be initialized before being used. Every

sequence is initialized by a pseudo column NEXTVAL. Once you've

created a sequence, you typically use it within an INSERT

statement. The NEXTVAL pseudo column gets the next value from

the sequence so it can be inserted into the table. The CURRVAL

pseudo column is used to check the current value of the sequence.

Modifying Sequence

It may be required later on to change certain parameters of an

already created sequence. This can be done using the ALTER

SEQUENCE command.

Syntax:

ALTER SEQUENCE <sequence name>

54

[sequence attributes]

Dropping Sequence

A sequence can be deleted using the DROP SEQUENCE

command.

Syntax:

DROP SEQUENCE <sequence name>

3.4.4 SYNONYMS

Synonyms are alternative names for an existing object which are

permanently stored in the database. We have used alias names for

accessing tables with shorter names in various queries. The

difference is that these alias names are of temporary nature and

are lost from one query to another, whereas synonyms are

permanent alias names for objects.

Advantages of using synonyms

 Synonyms are often used for security and convenience.

 They can do the following things:

◦ They can hide or mask the name and owner of an object.

◦ Provide location transparency for remote objects of a
distributed database.

◦ Simplify SQL statements for database users.

 With the help of synonyms the user can insert, update or
retreive records from any database object. Synonyms cannot
be used in a DROP TABLE, DROP VIEW or TRUNCATE
TABLE statement.

The various objects for which synonyms can be created are as

follows:

 Tables

 Views

 Materialized Views

 Stored Function

 Stored Procedures

 Packages

 Sequences

55

 Synonyms

There are two kinds of synonyms – public and private.

Public Synonym: These are accessible to all users provided they

have the appropriate object privilege on the object on which the

synonym is created.

Private Synonym: These belong only to the user who creates it.

Creating Synonyms

Synonyms can be created using the CREATE SYNONYM

command

Syntax:

CREATE [PUBLIC] SYNONYM <synonym name> FOR <object

name>

Renaming Synonyms

Only Private Synonyms can be renamed using the Rename

statement.

Syntax:

RENAME <old synonym name> TO <new synonym name>

Modifying a Synonym

To modify or alter or change a synonym use the OR REPLACE

clause. You can use this clause to change the definition of an

existing synonym without dropping it.

Syntax:

CREATE OR REPLACE [PUBLIC] SYNONYM <synonym name>

FOR <object name>

Removing a Synonym

Synonyms can be removed or deleted using the DROP SYNONYM

statement.

Syntax:

DROP SYNONYM <synonym name>

3.5 SUBQUERIES

Queries can be nested so that the results of one query can

be used in another query via a relational operator or aggregation

function. A nested query is known as a subquery. While joins and

56

other table operations provide computationally superior (i.e. faster)

alternatives in many cases, the use of subqueries introduces a

hierarchy in execution which can be useful or necessary.

Since you know how to code SELECT statements, you

already know how to code a subquery. It's simply a SELECT

statement that's coded within another SQL statement. A subquery

can return a single value, a result set that contains a single column

(single row subquery), or a result set that contains one or more

columns (multiple row subquery).

The following is the list of comparison operators used in a

single row subquery.

Symbol Description

Equal

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

<> Not equal

!= Not equal

The following is the list of comparison operators used in multiple

row subquery.

Subquery

Operator

Description

IN, =ANY Look for a match in any of the subquery rows

>ANY Look for a value greater than any of the

subquery rows

57

<ANY Look for a value less than any of the

subquery rows

>ALL Look for a value greater than all of the

subquery rows

<ALL Look for a value less than all of the subquery

rows

!=ALL, NOT IN Look for a value not present in any of the

subquery rows

Four ways to introduce a subquery in a SELECT statement

 In a WHERE clause as a search condition.

 In a HAVING clause as a search condition.

 In a FROM clause as a table specification.

 In a SELECT clause as a column specification.

Examples for subqueries:

 Get the product name and company name of the products
which have the maximum price.

SELECT product_name, company_name FROM product

WHERE unit_price = (SELECT MAX(unit_price) FROM product);

 Get the names of products which have a unit price less than
or equal to the average price of the products.

SELECT product_name FROM product

WHERE unit_price <= (SELECT AVG(unit_price) FROM product);

 Get the names of the product which has the highest price.

SELECT product_name FROM product

WHERE unit_price >= ALL (SELECT unit_price FROM product);

 Get the names of the products which have been ordered.

SELECT product_name FROM product

WHERE product_id IN (SELECT product_id FROM order_prod);

58

Or

SELECT product_name FROM product

WHERE product_id = ANY (SELECT product_id FROM

order_prod);

 Get the names of the products which have not been ordered
by any customers.

SELECT product_name FROM product

WHERE product_id NOT IN (SELECT product_id FROM

order_prod);

Or

SELECT product_name FROM product

WHERE product_id != ALL (SELECT product_id FROM

order_prod);

 Get the names of the products which have been ordered in
maximum quantity.

SELECT product_name FROM product

WHERE product_id IN (SELECT product_id FROM order_prod

GROUP BY product_id HAVING SUM(total_units) > = ALL

(SELECT SUM(total_units) FROM order_prod GROUP BY

product_id));

3.5.1 SUBQUERY in DDL and DML commands

Subqueries can be used in DDL commands to create a new

table from an existing table. The subquery is used to retreive the

data using which the new table is created. The structure of the new

table will be same as the structure of the query.

Subquery can be used to insert, update and delete rows

from the existing table.

For example,

 To create a table student_new containing roll, name and grade
of students enrolled in semester 3.

CREATE TABLE student_new AS

(SELECT roll, name, grade FROM student WHERE semester = 3);

59

 To insert a record in the table student_new (created above) with
roll number 1 more than the maximum roll number of the table.

INSERT INTO student_new VALUES

((SELECT MAX(roll) + 1 FROM student_new), 'Pravin', 'A');

3.6 SUMMARY

 Aggregate functions operate on a series of values and return a
single summary value.

 Aggregate functions are commonly used with the GROUP BY
clause in a SELECT statement, where the rows of a queried
table are divided into groups.

 The most common aggregate functions are

◦ AVG

◦ SUM

◦ MIN

◦ MAX

◦ COUNT

 GROUP BY clause forms groups on the specified columns. The
GROUP BY clause is used alongwith the aggregate functions to
retreive data grouped according to one or more columns.

 The HAVING clause to restrict the groups of returned rows to
those groups for which the specified condition is TRUE.

 A view is a logical representation of one or more tables. In
essence, a view is a stored query.

 Views can be classified as updateable views and non-
updateable views.

 Index is an object which can be defined as the ordered list of
values of a column or combination of columns used for faster
searching and sorting of data.

 By default, indexes are created for primary keys and unique
constraints of a table.

 Creating indexes must be avoided on columns that are updated
frequently since this slows down insert, update and delete
operations.

 SEQUENCE is a type of database object which can be used to

60

generate numbers in a sequence. This can be used to generate
values for primary keys.

 Synonyms are alternative names for an existing object which
are permanently stored in the database.

 There are two kinds of synonyms – public and private.

 Queries can be nested so that the results of one query can be
used in another query via a relational operator or aggregation
function. A nested query is also known as a subquery.

 Subqueries can be used in DDL commands to create a new
table from an existing table.

 Subquery can be used to insert, update and delete rows from
the existing table.

3.7 REVIEW QUESTIONS

1. What are aggregate functions? explain in detail.

2. Explain the Group By Having clause with examples.

3. Differentiate between the WHERE clause and HAVING
clause?

4. What is view? What are the benefits of using views?

5. Explain the types of views in detail.

6. Write a short note on indexes.

7. What is a sequence? Explain the syntax for creating a
sequence.

8. What is a synonym? Why should you use a synonym?

9. Explain the different types of synonyms? List the objects for
which synonyms can be created.

10.What is a subquery? Explain in detail with examples.

3.8 LAB ASSIGNMENT

1. Create a CUSTOMER table with the following columns and constraints

Column name Data type Size Constraint

CUSTOMER_ID CHAR 6 PRIMARY KEY. MUST

BEGIN WITH 'C'

CUSTOMER_NAME VARCHAR2 20 NOT NULL

61

ADDRESS VARCHAR2 20 UNIQUE

CITY VARCHAR2 20

PINCODE NUMBER 6

STATE VARCHAR2 20

BALANCE_DUE NUMBER 8,2

2. Create a PRODUCT table with the following columns and constraints

Column name Data type Size Constraint

PRODUCT_CODE CHAR 6 PRIMARY KEY

PRODUCT_NAME VARCHAR2 UNIQUE

QTY_AVAIL NUMBER 5

COST_PRICE NUMBER 8,2

SELLING_PRICE NUMBER 8,2

3. Create a ORDER table with the following columns and constraints

Column name Data type Size Constraint

ORDER_NO CHAR 6

ORDER_DATE TIMESTAMP

CUSTOMER_ID CHAR 6

PRODUCT_CODE CHAR 6

QUANTITY NUMBER 5

62

PRIMARY KEY = ORDER_NO + ORDER_DATE +

CUSTOMER_ID + PRODUCT_CODE

4. Insert 5-10 records in all the tables.
5. Apply UNIQUE constraint on

CUSTOMER_ID+PRODUCT_CODE on the ORDER table.
6. Define a foreign key on CUSTOMER_ID of ORDER table

referring to CUSTOMER_ID of CUSTOMER table.
7. Define a foreign key on PRODUCT_CODE of ORDER table

referring to PRODUCT_CODE of PRODUCT table.

8. Count the customerwise number of orders.

9. Calculate the average selling price of all products.

10.List the customer names for which we have orders in hand.

11.List the yearwise number of orders placed.

12.Display the customers who have placed some order. Use IN
and EXISTS operator.

13.Find the customer who has placed maximum number of orders.

14.Create unique index on ORDER_NO, CUSTOMER_ID and
PRODUCT_CD of ORDER table.

15.Create a non unique index on STATE of CUSTOMER table.

16.Create a view named “vw_balance” which will display customer
names with balances more than 4000.

17.Add two new customers through the view.

18.Create a view named “vw_city” which will contain citywise total
balances.

3.9 BIBLIOGRAPY, REFERENCES AND FURTHER

READING

 Database Management Systems, Third Edition by
RamaKrishnan, Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz,
Korth, Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael
McLaughlin, Tata McGraw-Hill

63

 SQL, PL/SQL The programming language of Oracle, Bayross
Ivan, BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and
Navathe B. Shamkant, Pearson

3.10 ONLINE REFERENCES

Wikipedia Link

http://en.wikipedia.org/wiki/SQL

Oracle Database PL/SQL language Reference 11g Release 2

(11.2), part number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dy

n.htm

64

Unit - II

4

SECURITY PRIVILEGES, SET

OPERATORS & DATETIME FUNCTIONS

Unit Structure

4.0 Objectives

4.1 Introduction

4.2 Enhancements to GROUP BY function

4.2.1 ROLLUP Operator

4.2.2 CUBE Operator

4.2.3 GROUPING Function

4.3 SET OPERATORS

4.3.1 INTERSECT Operator

4.3.2 UNION Operator

4.3.3 UNION ALL Operator

4.3.4 MINUS Operator

4.4 DATETIME FUNCTIONS

4.4.1 Parsing Date and Time

4.5 Controlling User Access

4.5.1 System privileges

4.5.2 Object Privileges

4.5.3 What a user can grant?

4.5.4 GRANT/REVOKE PRIVILEGES

4.5.4.1 GRANT COMMAND

4.5.4.2 REVOKE COMMAND

4.6 Summary

4.7 Review Questions

4.8 Lab Assignment

4.9 Bibliography, References and Further Reading

4.10 Online References

65

4.0 OBJECTIVES

At the end of this chapter you will be able to:

 Get summary information using CUBE, ROLLUP and
GROUPING

 Combine queries using SET operators
 Use DateTime Functions
 Control User Access

4.1 INTRODUCTION

In the previous unit, we saw basic SQL operators,

statements, queries and subqueries. In this unit, we shall see

advanced subqueries, various advanced operators and security

privileges.

In the previous chapter we discussed SQL keywords and

functions. In this chapter we will see the extensions of GROUP BY

clause: ROLLUP and CUBE operators, and GROUPING function.

Also we will combine queries using SET operators and see various

DateTime functions.

4.2 ENHANCEMENTS TO GROUP BY FUNCTION

In the previous chapter we saw that the GROUP BY clause

forms groups on specified columns. The HAVING clause filters

these groups depending on some conditions.

Assume the records in the EMP table as shown below.

EMPNO ENAME HIREDATE DEPTNO JOB SALARY COMM

111 Satish 19-DEC-2008 10 CLERK 7000 1000

222 Rashmi 01-JAN-1987 20 ANALYST 8000 550

333 Rishi 05-JUN-1976 10 MANAGER 10,000 450

444 Anil 16-APR-1967 10 PRESIDENT 15,000 2000

555 Anita - 30 MANAGER 8000 1000

666 Nilesh 20-MAY-1987 20 MANAGER 13,000 -

777 Ruchi 11-JUN-2000 30 SALESMAN 5000 -

888 Sarika - 20 SALESMAN 4000 -

66

A simple GROUP BY clause will show the following result.

 Display the amount of salary being paid jobwise for each
department.

SELECT deptno, job, SUM(sal) FROM emp

GROUP BY deptno, job

ORDER BY deptno, job;

DEPTNO JOB SUM(SAL)

10 CLERK 7000

10 MANAGER 10000

10 PRESIDENT 15000

20 ANALYST 8000

20 MANAGER 13000

20 SALESMAN 4000

30 MANAGER 8000

30 SALESMAN 5000

4.2.1 ROLLUP Operator

The ROLLUP operator can be used to add one or more

summary rows to a result set that uses grouping and aggregates. A

summary is provided for each aggregate column included in the

select list. All other columns, except the ones that identify which

group is being summarized, are assigned null values. It also adds a

summary row to the end of the result set that summarizes the entire

result set.

 Display the amount of salary being paid jobwise for each
department.

SELECT deptno, job, SUM(sal) FROM emp

GROUP BY ROLLUP (deptno, job)

ORDER BY deptno, job;

67

DEPTNO JOB SUM(SAL)

10 CLERK 7000

10 MANAGER 10000

10 PRESIDENT 15000

10 (null) 32000

20 ANALYST 8000

20 MANAGER 13000

20 SALESMAN 4000

20 (null) 25000

30 MANAGER 8000

30 SALESMAN 5000

30 (null) 13000

(null) (null) 70000

4.2.2 CUBE Operator

The CUBE operator is similar to the ROLLUP operator,

except it adds summary rows for every combination of groups

specified in the GROUP BY clause. It also adds a summary row to

the end result set that summarizes the entire result set.

(14) Display the amount of salary being paid jobwise for
each department.

SELECT deptno, job, SUM(sal) FROM emp

GROUP BY CUBE (deptno, job)

ORDER BY deptno, job;

DEPTNO JOB SUM(SAL)

10 CLERK 7000

10 MANAGER 10000

10 PRESIDENT 15000

10 (null) 32000

20 ANALYST 8000

20 MANAGER 13000

68

20 SALESMAN 4000

20 (null) 25000

30 MANAGER 8000

30 SALESMAN 5000

30 (null) 13000

(null) ANALYST 8000

(null) CLERK 7000

(null) MANAGER 31000

(null) PRESIDENT 15000

(null) SALESMAN 9000

(null) (null) 70000

4.2.3 GROUPING Function

Using the ROLLUP and CUBE operator introduces a null

value to the column in a summary row that hasn't been

summarized. If you want to assign a value other than null to these

columns, you can do it by using the GROUPING function. The

GROUPING function determines when a null value is assigned to a

column as a result of the ROLLUP or CUBE operator. The column

named in this function must be one of the columns named in the

GROUP BY clause.

If a null value is assigned to the specified column as a result

of the ROLLUP or CUBE operator, the GROUPING function returns

a value of 1. Otherwise it returns a value of 0.

 Display the amount of salary being paid jobwise for each
department.

SELECT

CASE

WHEN GROUPING (deptno) = 1 THEN '=========='

ELSE deptno

END AS dept_no,

CASE

WHEN GROUPING (job) = 1 THEN '=========='

ELSE job

69

END AS job,

SUM(sal)

FROM emp

GROUP BY ROLLUP (deptno, job)

ORDER BY deptno, job;

DEPTNO JOB SUM(SAL)

10 CLERK 7000

10 MANAGER 10000

10 PRESIDENT 15000

10 ========== 32000

20 ANALYST 8000

20 MANAGER 13000

20 SALESMAN 4000

20 ========== 25000

30 MANAGER 8000

30 SALESMAN 5000

30 ========== 13000

========== ========== 70000

4.3 SET OPERATORS

Set operators combine the results of two component

queries into a single result. Queries containing set operators are

called compound queries. Like joins, set operators combine data

from two or more tables but there is a big difference. Joins try to

combine columns from the base tables, however, set operators

combine rows from two or more result sets.

Generally SET operations are applied on multiple SELECT

statements. The records returned by each SELECT statement are

treated as a SET of values and the final result is obtained

depending on the SET operator used. There are four SET

operators available:

 UNION
 UNION ALL
 INTERSECT
 MINUS

70

Conditions for SET operations

Two SELECT statements can be combined into a compund query

by a SET operation if they satisfy the following conditions:

 The result set of both the queries must have the same
number of columns.

 The data type of each column in the first result set must
match with the data types of the columns of the second
result set.

Restrictions on SET operations

 The column names for the resultant data set will come from
the first query.

 If you want to use the ORDER BY clause in the query
involving SET operations, you must place the ORDER BY
clause only once at the end of the compound query. The
component queries can't have individual ORDER BY
clauses.

Syntax:

<query 1>

[SET OPERATOR]

<query 2>

Assume two tables “student” and “student_details” as shown below.

CLASS ROLLNO NAME

201 1 Satish

201 2 Rashmi

205 3 Rishi

205 4 anil

ROLLNO SUBJECT MARKS

1 Maths 12

1 Physics 23

2 Maths 34

3 Maths 35

71

4.3.1 INTERSECT Operator

Returns only those rows which are common to both queries.

 Display the rollnos of students that are in both the student
and student_details table.

SELECT rollno FROM student

INTERSECT

SELECT rollno FROM student_details;

ROLLNO

1

2

3

 Display the details of students from the student table for which
marks have been entered in the student_details table.

SELECT * FROM student

WHERE rollno IN

(

SELECT rollno FROM student

INTERSECT

SELECT rollno FROM student_details

);

CLASS ROLLNO NAME

201 1 Satish

201 2 Rashmi

205 3 Rishi

72

4.3.2 UNION Operator

Returns the values which exist in either of the two queries. By

default, a UNION eliminates duplicate rows.

10.Display all the rollnos which exist either in the student or in
the student_details table.

SELECT rollno FROM student

UNION

SELECT rollno FROM student_details;

RO

LLNO

1

2

3

4

4.3.3 UNION ALL Operator

Returns the values which exist in either of the two queries. The

UNION operator has an additional clause ALL which displays the

duplicate values also.

Display all the rollnos which exist either in the student or in the
student_details table.

SELECT rollno FROM student

UNION ALL

SELECT rollno FROM student_details;

ROLLNO

1

2

3

4

1

1

2

3

73

Using ORDER BY clause

In order to arrange the final result of any SET operator, we can use

the ORDER BY clause at the end of the last SELECT statement.

 Display all the rollnos which exist either in the student or in
the student_details table.

SELECT rollno FROM student

UNION ALL

SELECT rollno FROM student_details

ORDER BY rollno;

ROLLNO

1

1

1

2

2

3

3

4

4.3.4 MINUS Operator

The MINUS operator takes the result set of one SELECT

statement, and removes those rows that are also returned by a

second SELECT statement. It removes the records that are

common to both the queries and displays the remaining records

from the query 1.

19.Display the rollnos whose marks have not been entered in the
student_details table.

SELECT rollno FROM student

MINUS

SELECT rollno FROM student_details;

74

ROLLNO

4

4.4 DATETIME FUNCTIONS

We saw a brief overview of DateTime functions in chapter 2.

In this section we discuss about these functions in greater detail.

Datetime functions operate on date (DATE), timestamp

(TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP

WITH LOCAL TIME ZONE), and interval (INTERVAL DAY TO

SECOND, INTERVAL YEAR TO MONTH) values.

Two operators, plus and minus signs, can be used to work

with dates. Summary of these operators is provided in the table

below.

Operato

r

Description

+ Adds the specified number of days to a date

- Subtracts the specified number of days from a date.

Or, subtracts one date from another and returns the

number of days between the two dates.

The table given below gives the syntax of commonly used

date time functions and also their explanation. If you study the

summaries and examples of these functions, you shouldn't have

much trouble using them.

Function Description

SYSDATE Returns the current local date

and time based on the

operating system's clock

CURRENT_DATE Returns the local date and time

adjusted for the current session

time zone

75

ROUND (date [, date_format]) Returns the date rounded to the

unit specified by the date

format. If the format is omitted,

rounds to the nearest day.

TRUNC (date [, date_format]) Works like the ROUND function

but truncates the date.

MONTHS_BETWEEN (date1,

date2)

Returns the number of months

between date1 and date2.

ADD_MONTHS (date,

integer_months)

Adds the specified number of

months to the specified date

and returns the resulting date.

LAST_DAY (date) Returns the date for the last

day of the month for the

specified date.

NEXT_DAY (date, day_of_week) Returns the date for the next

day of the week that comes

after the specified date.

Examples that use date/time functions

Example Result

SYSDATE 19-OCT-09 04:23:36 PM

ROUND (SYSDATE) 20-OCT-09 12:00:00 AM

ROUND (SYSDATE, 'MI') 19-OCT-09 04:24:00 PM

TRUNC (SYSDATE, 'MI') 19-OCT-09 04:23:00 PM

MONTHS_BETWEEN ('15-SEP-08', '01-

AUG-08')

1.45161290.........

ADD_MONTHS ('19-OCT-09', -1) 19-SEP-09

76

LAST_DAY ('15-FEB-09') 28-FEB-09

NEXT_DAY ('15-AUG-08', 'THURS') 21-AUG-08

SYSDATE – 1 18-OCT-09

For Example, let us find out the number of years for various

employees who served the company. (refer to the emp table)

SELECT empno, ename, hiredate, ROUND((sysdate –

hiredate)/365) no_of_years

FROM emp;

EMPNO ENAME HIREDATE NO_OF_YEARS

111 Satish 19-DEC-2008 01

222 Rashmi 01-JAN-1987 22

333 Rishi 05-JUN-1976 33

444 Anil 16-APR-1967 42

666 Nilesh 20-MAY-1987 22

777 Ruchi 11-JUN-2000 9

Note: The employees whose hire date is NULL are not listed. Since

the ROUND function is used without any specified format, rounding

is done for the next year (i.e. for the first row the time between

hiredate (19/12/08) and sysdate (19/10/2009) is 10 months).

4.4.1 Parsing Date and Time

TO_CHAR function can be used to return various parts of a DATE

value as a string. To do that you need to specify the appropriate

date format element for the part of the DATE value that you want to

return.

77

Example Result

TO_CHAR (SYSDATE, 'DD-MON-RR HH:MI:SS') 19-OCT-09 04:23:36 PM

TO_CHAR (SYSDATE, 'YEAR') TWO THOUSAND NINE

TO_CHAR (SYSDATE, 'YYYY') 2009

TO_CHAR (SYSDATE, 'YY') 09

TO_CHAR (SYSDATE, 'MONTH') OCTOBER

TO_CHAR (SYSDATE, 'MON') OCT

TO_CHAR (SYSDATE, 'MM') 10

TO_CHAR (SYSDATE, 'DAY') MONDAY

TO_CHAR (SYSDATE, 'DY') MON

TO_CHAR (SYSDATE, 'DD') 19

TO_CHAR (SYSDATE, 'HH24') 16

TO_CHAR (SYSDATE, 'HH') 04

TO_CHAR (SYSDATE, 'MI') 23

TO_CHAR (SYSDATE, 'Q') 4

4.5 CONTROLLING USER ACCESS

Oracle is a multi-user RDBMS and provides a secure

environment such that the objects owned by a user are by default

not accessible to the other users. It provides the facility that the

owner of an object can grant various permissions to other database

users as per requirements.

Authorization includes primarily two processes:

 Permitting only certain users to access, process, or alter data.

78

 Applying varying limitations on user access or actions. The
limitations placed on (or removed from) users can apply to
objects such as schemas, tables, or rows or to resources such
as time (CPU, connect, or idle times).

A user privilege is the right to run a particular type of SQL
statement, or the right to access an object that belongs to another
user, run a PL/SQL package, and so on.

Roles are created by users (usually administrators) to group
together privileges or other roles. They are a way to facilitate the
granting of multiple privileges or roles to users.

There are two types of privileges: system privileges and object

privileges.

4.5.1 System privileges:

A system privilege is the right to perform a particular action or to

perform an action on any schema objects of a particular type. For

example, the privileges to create tablespaces and to delete the

rows of any table in a database are system privileges.

Some of the most common system privileges are:

 CREATE / ALTER / DROP USER
 CREATE SESSION
 CREATE / ALTER / DROP TABLE
 CREATE VIEWS
 CREATE PROCEDURE
 CREATE SEQUENCE
 CREATE PUBLIC SYNONYM

4.5.2 Object Privileges:

An object privilege is a right that you grant to a user on a

database objects like tables, views, sequences, packages,

procedures. Some examples of object privileges include the right

to:

 Use an edition
 Update a table
 Select rows from another user's table
 Execute a stored procedure of another user

4.5.3 What a user can grant?

A user can grant privileges on any object he/she owns. Different

objects have different permissions to be assigned to other users as

specified in the table below.

79

Object Privileges

Table SELECT, INSERT, UPDATE,

DELETE, ALTER, INDEX

View, Materialized Views SELECT, INSERT, UPDATE,

DELETE

Sequence SELECT, ALTER

Functions, Procedures, Packages EXECUTE

Index EXECUTE

4.5.4 GRANT/REVOKE PRIVILEGES

The Data Control Language commands are used to enforce

database security in a multiple user database environment. The

Data Control Language (DCL) authorizes users and groups of

users to access and manipulate data. Its two main statements are:

13. GRANT: authorizes one or more users to perform an
operation or a set of operations on an object.

14. REVOKE: eliminates a grant, which may be the
default grant.

4.5.4.1 GRANT COMMAND

The GRANT command is used to grant system and object

privileges to a role or a user.

Granting System Privileges

You can grant system privileges to users and roles. If you grant

system privileges to roles, then you can use the roles to exercise

system privileges.

The syntax of GRANT statement for system privileges

GRANT <system_privilege>

TO <user_or_role>

[WITH ADMIN OPTION]

80

The WITH ADMIN OPTION clause allows the user or role to grant

the specified system privileges to other users or roles.

For example,

 A statement that grants a system privilege to a role

GRANT CREATE SESSION TO ap_user;

 A statement that grants a system privilege to a role with the
admin option

GRANT CREATE SESSION TO ap_developer WITH ADMIN

OPTION;

Granting Object Privileges

Each type of object has different privileges associated with it.

Object privileges can be granted to users and roles. If you grant

object privileges to roles, then you can make the privileges

selectively available.

The syntax of GRANT statement for object privileges

GRANT <object_privilege>

ON <[schema_name.]object_name [(column [,.....])]>

TO <user_or_role>

[WITH GRANT OPTION]

The WITH GRANT OPTION clause allows the user or role to grant

the specified object privileges to other users or roles.

Consider the following examples,

 A statement that grants an object privilege to a role

GRANT SELECT ON emp TO ap_user;

 A statement that grants all object privileges to a role with the
grant option

GRANT SELECT, INSERT, UPDATE, DELETE ON emp TO

ap_developer WITH GRANT OPTION;

4.5.4.2 REVOKE COMMAND

The REVOKE command is used to revoke system or object

privileges from a role or user.

Revoking System Privileges

You can revoke system privileges from roles or users.

81

The syntax of REVOKE statement for system privileges

REVOKE <system_privilege>

FROM <user_or_role>

Consider the following examples,

 A statement that revokes a system privilege from a role

REVOKE DROP ANY VIEW FROM ap_user;

Revoking Object Privileges

Each type of object has different privileges associated with it.

Object privileges can be revoked from users and roles.

The syntax of REVOKE statement for object privileges

REVOKE [GRANT OPTION FOR] <object_privilege>

ON <[schema_name.]object_name [(column [,.....])]>

FROM <user_or_role>

[RESTRICT | CASCADE]

The GRANT OPTION FOR clause allows the user or role to revoke

the specified object privileges from other users or roles.

The RESTRICT clause revokes all privileges for the user.

The CASCADE clause revokes all privileges for the user and given

by the user to other users.

Consider the following examples,

 A statement that revokes an object privilege from a role

REVOKE SELECT ON emp FROM ap_user;

 A statement that revokes selected object privileges from a
role with the grant option

REVOKE GRANT OPTION FOR SELECT, INSERT, ON emp

FROM ap_developer RESTRICT;

NOTE:

You can specify ALL [PRIVILEGES] to grant or revoke all available

object privileges for an object. ALL is not a privilege; rather, it is a

shortcut, or a way of granting or revoking all object privileges with

one GRANT and REVOKE statement. If all object privileges are

granted using the ALL shortcut, then individual privileges can still

be revoked.

82

Similarly, you can revoke all individually granted privileges by
specifying ALL.

Consider the following examples,

 A statement that grants all object privileges to a role.

GRANT ALL ON emp TO ap_developer;

 A statement that revokes all object privilege from a role

REVOKE ALL ON emp FROM ap_user;

4.6 SUMMARY

 The ROLLUP operator can be used to add one or more
summary rows to a result set that uses grouping and
aggregates.

 The CUBE operator is similar to the ROLLUP operator, except it
adds summary rows for every combination of groups specified
in the GROUP BY clause.

 The GROUPING function determines when a null value is
assigned to a column as a result of the ROLLUP or CUBE
operator.

 Set operators combine the results of two component queries
into a single result. Queries containing set operators are called
compound queries.

 The summary of various SET operators is as follows:

Operator Description

UNION ALL Combines the results of two SELECT statements

into one result set.

UNION Combines the results of two SELECT statements

into one result set, and then eliminates any

duplicate rows from that result set.

MINUS Takes the result set of one SELECT statement,

and removes those rows that are also returned

by the another SELECT statement.

INTERSECT Returns only those rows that are returned by

each of the two SELECT statements.

83

 Datetime functions operate on date, timestamp, and interval
values.

 TO_CHAR function can be used to return various parts of a
DATE value as a string.

 A user privilege is the right to run a particular type of SQL
statement, or the right to access an object that belongs to
another user, run a PL/SQL package, and so on.

 There are two types of privileges: system privileges and object
privileges.

 A system privilege is the right to perform a particular action or to
perform an action on any schema objects of a particular type.

 An object privilege is a right that you grant to a user on a
database objects like tables, views, sequences, packages,
procedures.

 The GRANT command is used to grant system and object
privileges to a role or a user.

 The REVOKE command is used to revoke system or object
privileges from a role or user.

4.7 REVIEW QUESTIONS

1. Explain the ROLLUP and CUBE operator with examples.

2. What are SET operators? List and explain the different types of
SET operators.

3. Using DateTime functions, how to calculate age from date of
birth?

4. What is a privilege? Explain the different types of privileges.

5. Explain the GRANT command in detail with examples.

6. Explain the REVOKE command in detail with examples.

4.8 LAB ASSIGNMENT

1. Create a CUSTOMER table with the following columns and

constraints

Column name Data type Size Constraint

CUSTOMER_ID CHAR 6 PRIMARY KEY.
MUST BEGIN
WITH 'C'

CUSTOMER_NAME VARCHAR2 20 NOT NULL

ADDRESS VARCHAR2 20 UNIQUE

CITY VARCHAR2 20

84

PINCODE NUMBER 6

STATE VARCHAR2 20

BALANCE_DUE NUMBER 8,2

2. Create a PRODUCT table with the following columns and constraints

Column name Data type Size Constraint

PRODUCT_CODE CHAR 6 PRIMARY KEY

PRODUCT_NAME VARCHAR2 20 UNIQUE

QTY_AVAIL NUMBER 5

COST_PRICE NUMBER 8,2

SELLING_PRICE NUMBER 8,2

3. Create a ORDER table with the following columns and constraints

Column name Data type Size Constraint

ORDER_NO CHAR 6

ORDER_DATE TIMESTAMP

CUSTOMER_ID CHAR 6

PRODUCT_CODE CHAR 6

QUANTITY NUMBER 5

PRIMARY KEY = ORDER_NO + ORDER_DATE +

CUSTOMER_ID + PRODUCT_CODE

4. Insert 5-10 records in all the tables.
5. Apply UNIQUE constraint on

CUSTOMER_ID+PRODUCT_CODE on the ORDER table.
6. Define a foreign key on CUSTOMER_ID of ORDER table

referring to CUSTOMER_ID of CUSTOMER table.
7. Define a foreign key on PRODUCT_CODE of ORDER table

referring to PRODUCT_CODE of PRODUCT table.

8. Find the total number of orders and the customerwise number of
orders from the ORDER table.

9. Display the orders placed during the year '2008'.

10.What would be the date 10 days from today.

11.28/02/2010 would fall on which day (Mon, Tue,)?

12.List the customer codes that have placed orders using SET
operators.

13.Display the customer codes that have not placed any order
using SET operators.

14.Display the customer codes that have placed some order using
SET operators.

85

15.Permit the user “Ram” to be able to INSERT and DELETE
commands in the CUSTOMER table.

16.Grant INSERT permission to the user “Ravi” such that he can
further grant the INSERT permission to other users for the
CUSTOMER table.

17.Withdraw the DELETE permission from “Ram”.

18.Give the UPDATE permission on ADDRESS and STATE
column of the CUSTOMER table to “Kishan”.

4.9 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Database Management Systems, Third Edition by
RamaKrishnan, Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz,
Korth, Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
Tata McGraw-Hill

 SQL, PL/SQL The programming language of Oracle, Bayross
Ivan, BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and
Navathe B. Shamkant, Pearson

4.10 ONLINE REFERENCES

Wikipedia Link

http://en.wikipedia.org/wiki/SQL

Oracle Database PL/SQL language Reference 11g Release 2

(11.2), part number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dy

n.htm

86

5

ADVANCED SUBQUERIES

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Multiple Column Subqueries

5.2.1 Coding Subqueries in the FROM clause

5.3 Scalar Subqueries

5.4 Correlated Subquery

5.5 WITH clause

5.5.1 Functions of the WITH clause

5.6 Hierarchical Queries

5.7 Summary

5.8 Review Questions

5.9 Lab Assignment

5.10 Bibliography, References and Further Reading

5.11 Online References

5.0 OBJECTIVES

At the end of this chapter you will be able to,

15. Understand Scalar and Correlated Subqueries
16. Write and Execute Multiple Column Subqueries
17. Understand WITH clause
18. Understand Hierarchical queries

87

5.1 INTRODUCTION

In the previous chapters we learnt that, queries can be nested so that the

results of one query can be used in another query via a relational

operator or aggregation function. This type of nested query is known as a

subquery. In this chapter we will discuss more about the specifics of using

subqueries.

To illustrate the concepts in this chapter, assume the tables “EMP” and

“EMP_DETAILS” having the following records.

Table EMP:

EMPID DESIGNATION DEPT SALARY

1001 Manager Finance 50000

1002 Executive Finance 25000

1003 Senior Executive Finance 35000

1004 Manager HR 20000

1005 Executive HR 20000

1006 Senior Executive HR 30000

1007 Manager Admin 55000

1008 Executive Finance 25000

1009 Executive Finance 25000

1010 Executive HR 25000

Table EMP_DETAILS:

EMPID ENAME AGE

1001 Rajesh 23

1002 Tejal 25

88

1003 Himesh 35

1004 Himali 37

1005 Rehan 40

1006 Kiran 28

1007 Ashima 21

1008 Vikram 31

1009 Ridhi 26

5.2 MULTIPLE COLUMN SUBQUERIES

Multiple column subquery returns the rows on the basis of matching of a

pair of given columns for a given row. It first selects the row on the basis

of the WHERE clause and then finds the other rows on the basis of a

matching pair of columns of the particular row. There are two types of

comparison in multiple column subqueries.

Pair wise: In pair wise comparison we search both the columns match in

the same subquery, e.g. “WHERE (column1, column2) IN (subquery1)”

Non Pair wise: In non pair wise comparison we search the columns in

separate subqueries, e.g. “WHERE (column1) IN (subquery1) AND

(column2) IN (subquery2)”.

 List the empid of employees who have the same salary and
designation as the employee having empid 1009.
SELECT DISTINCT empid FROM emp

WHERE (designation, salary)

IN (SELECT designation, salary FROM emp WHERE empid =

1009)

ORDER BY empid;

Or

SELECT DISTINCT empid FROM emp

WHERE ((designation) IN (SELECT designation, salary FROM

emp WHERE empid = 1009)) AND ((salary) IN (SELECT

designation, salary FROM emp WHERE empid = 1009))

ORDER BY empid;

89

Both the queries above will give the same result set. The first query is the

pair wise comparison while the second query is the non pair wise

comparison. The output of the above query is:

EMPID

1002

1008

1009

1010

5.2.1 CODING SUBQUERIES IN THE FROM CLAUSE

A subquery can be coded in place of a table specification i.e. in the

FROM clause. The results of the subquery are joined with another table.

When you use a subquery in this way, it can return any number of rows

and columns. This type of subquery, in the FROM clause of a SELECT

statement, is referred to as an inline view since it works like a view that

is temporarily created and stored in the memory. Inline views are most

useful when you need to summarize the results of a summary query.

When you create an inline view, you must assign an alias to it. Then, you

can use the inline view within the outer query just as you would any other

table.

For example,

 To find the department in which the maximum number of
employees work.

SELECT MAX (inview.total_emp)

FROM (SELECT COUNT (empid) as total_emp FROM emp

GROUP BY dept) inview;

MAX(INVIEW.TOTAL_EMP)

5

In the above query, we use the alias 'inview' for the subquery that begins

after the FROM clause. The subquery counts the number of employees

that work in each department & the outer query takes the values from the

90

subquery using the MAX function finds the maximum number of

employees to give the result set.

5.3 SCALAR SUBQUERIES

A scalar subquery expression is a subquery that returns exactly one

column value from one row. The value of the scalar subquery expression

is the value of the select list item of the subquery. If the subquery returns

0 rows, then the value of the scalar subquery expression is NULL. If the

subquery returns more than one row, then Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an

expression (expr).

For example,

 Get the name and age of the employee enjoying maximum salary.

SELECT ename, age FROM emp_details

WHERE empid = (SELECT empid FROM emp WHERE salary =

(SELECT MAX(salary) FROM emp));

ENAME AGE

Ashima 21

In the above example, the innermost scalar subquery gets

executed first providing the maximum salary from the EMP table, then the

empid of the employee is selected and given to the outer query to get the

name and age of the employee.

5.4 CORRELATED SUBQUERY

A correlated subquery is a subquery that is executed once for

each row processed by the outer query. It's similar to using a loop to do

repetitive processing in a procedural programming. In contrast, a

noncorrelated subquery is executed only once. In correlated subquery,

the outer query executes first and the inner query will execute second.

Each subquery is executed once for every row of the outer query.

For example,

 Get the list of employees whose salary are higher than or equal to
the average salary of their respective departments.

91

SELECT e1.empid, e1.dept FROM emp e1

WHERE salary >= (SELECT AVG(salary) FROM emp e2 GROUP

BY e2.dept

HAVING e1.empid = e2.empid);

EMPID DEPT

1001 Finance

1003 Finance

1006 HR

1007 Admin

To run the inner query we need to know the “dept” of the employee

selected in the outer query. For each and every department value coming

from the outer query the average salary of the department is calculated in

the inner query and compared with the salary of the employee in the outer

query.

5.5 WITH CLAUSE (SUBQUERY FACTORING

CLAUSE)

The WITH query_name clause lets you assign a name to a subquery
block. You can then reference the subquery block multiple places in
the query by specifying query_name. SQL optimizes the query by
treating the query name as either an inline view or as a temporary
table.

Syntax:

WITH query_name ([c_alias [, c_alias]...]) AS (subquery)

[, query_name ([c_alias [, c_alias]...]) AS (subquery)]...

The column aliases following the query_name and the set
operators separating multiple subqueries in the AS clause are valid.
You can specify this clause in any top-level SELECT statement and
in most types of subqueries. The query name is visible to the main
query and to all subsequent subqueries. To code multiple subquery
factoring clauses, separate them with commas. Then each clause
can refer to itself and any previously defined subquery factoring
clauses in the same WITH clause.

92

5.5.1 FUNCTIONS OF THE WITH CLAUSE

(15) A named query can be referenced any number of times.

(16) Any number of named queries can be created.

(17) Named queries can reference other named queries that
came before them and even correlate to previous named queries.

(18) The scope of the WITH clause is local to the SELECT in
which they are defined.

Consider the following examples,

 Get the empid of the employee who works in the HR department
and gets the maximum salary.

WITH hr_sal AS

(SELECT empid, salary FROM emp WHERE dept = ‘HR’)

SELECT MAX (salary) FROM hr_sal;

MAX (SALARY)

30000

 Get the average age of employees working in the “Finance”
department.

WITH fin_age AS

(SELECT empid, salary FROM emp WHERE dept = ‘Finance’

SELECT AVG (age) FROM emp_details

WHERE empid IN (SELECT empid FROM fin_age);

5.6 HIERARCHICAL QUERIES

A hierarchical query loops through a result set and returns rows

in a hierarchical sequence. If a table contains hierarchical data, then you

can select rows in a hierarchical order using the hierarchical query

clause.

Syntax:

SELECT select_list

FROM table_name

[WHERE search_condition]

START WITH row_specification

CONNECT BY PRIOR connect_expr

SELECT statements that contain hierarchical queries can contain the
LEVEL pseudocolumn in the select list. LEVEL returns the value 1 for
a root node, 2 for a child node of a root node, 3 for a grandchild,

93

and so on. The number of levels returned by a hierarchical query
may be limited by available user memory.

START WITH Clause – used to specify a condition that
identifies the row(s) to be used as the root(s) of a hierarchical
query.

CONNECT BY Clause – followed by the PRIOR keyword is used to
specify a condition that identifies the relationship between parent
rows and child rows of the hierarchy.

Assume the records in the EMP_NEW table

EMPID ENAME DESIGNATION DEPT SALARY MGRID

1001 Rajesh Manager Finance 50000 1007

1002 Tejal Executive Finance 25000 1003

1003 Himesh Senior Executive Finance 35000 1001

1004 Himali Manager HR 20000 1010

1005 Rehan Executive HR 20000 1010

1006 Kiran Senior Executive HR 30000 1007

1007 Ashima President Admin 55000 -

1008 Vikram Executive Finance 25000 1003

1009 Ridhi Executive Finance 25000 1001

1010 Prakash Executive HR 25000 1006

94

A query that returns hierarchical data

SELECT LEVEL, empid, ename, mgrid FROM emp_new

START WITH ename = “Ashima”

CONNECT BY PRIOR empid = mgrid

ORDER BY LEVEL, empid;

LEVEL EMPID ENAME MGRID

1 1007 Ashima -

2 1001 Rajesh 1007

2 1006 Kiran 1007

3 1003 Himesh 1001

3 1009 Ridhi 1001

3 1010 Prakash 1006

4 1002 Tejal 1003

4 1004 Himali 1010

4 1005 Rehan 1010

4 1008 Vikram 1003

The EMP_NEW table uses the MGR column to identify the

manager for each employee. Here, Ashima is the top level manager since

she doesn’t have a manager. Rajesh and Kiran report to Ashima and so

on.

Ashima

(1007)

Rajesh Kiran

Himesh

(1003)

Ridhi

(1009)

Tejal Vikram

Prakash

(1010)

Himali Rehan

95

The hierarchical query uses the LEVEL pseudo-column to return a

column that identifies the level of the employee within the hierarchy. In

addition, this query uses the LEVEL pseudo-column in the ORDER BY

clause to sort by this column.

After the FROM clause, this query uses the START WITH clause to

identify the row to be used as the root of the hierarchy. Finally the

CONNECT BY clause specifies the condition that identifies the

relationship between the parent rows and the child rows.

5.7 SUMMARY

 Multiple column subquery returns the rows on the basis of matching
of a pair of given columns for a given row. It first selects the row on
the basis of the WHERE clause and then finds the other rows on the
basis of a matching pair of columns of the particular row.

 There are two types of comparison in multiple column subqueries -
Pair-Wise and Non Pair-wise.

 A subquery can be coded in place of a table specification i.e. in the
FROM clause. The results of the subquery are joined with another
table.

 A scalar subquery expression is a subquery that returns exactly one
column value from one row.

 A correlated subquery is a subquery that is executed once for each
row processed by the outer query. It's similar to using a loop to do
repetitive processing in a procedural programming.

 The WITH query_name clause lets you assign a name to a subquery
block.

 To code multiple subquery factoring clauses, separate them with
commas. Then each clause can refer to itself and any previously
defined subquery factoring clauses in the same WITH clause.

 If a table contains hierarchical data, then you can select rows in a
hierarchical order using the hierarchical query clause.

5.8 REVIEW QUESTIONS

 Explain multiple column subqueries with suitable examples.

 What is an inline view? When can you use it? Explain with
example.

 What is a scalar subquery? Explain with suitable example.

 What is a correlated subquery? Explain with suitable example.

96

 Explain the WITH clause. Why should you use the WITH clause?

 What is a hierarchical query? Illustrate with the help of an
example.

5.9 LAB ASSIGNMENT

1. Create a CUSTOMER table with the following columns and constraints

Column name Data type Size Constraint

CUSTOMER_ID CHAR 6 PRIMARY KEY. MUST

BEGIN WITH 'C'

CUSTOMER_NAME VARCHAR2 20 NOT NULL

ADDRESS VARCHAR2 20 UNIQUE

CITY VARCHAR2 20

PINCODE NUMBER 6

STATE VARCHAR2 20

BALANCE_DUE NUMBER 8,2

2. Create a PRODUCT table with the following columns and constraints

Column name Data type Size Constraint

PRODUCT_CODE CHAR 6 PRIMARY KEY

PRODUCT_NAME VARCHAR2 20 UNIQUE

QTY_AVAIL NUMBER 5

COST_PRICE NUMBER 8,2

SELLING_PRICE NUMBER 8,2

97

3. Create a ORDER table with the following columns and constraints

Column name Data type Size Constraint

ORDER_NO CHAR 6

ORDER_DATE TIMESTAMP

CUSTOMER_ID CHAR 6

PRODUCT_CODE CHAR 6

QUANTITY NUMBER 5

PRIMARY KEY = ORDER_NO + ORDER_DATE + CUSTOMER_ID +

PRODUCT_CODE

 Insert 5-10 records in all the tables.
 Apply UNIQUE constraint on CUSTOMER_ID+PRODUCT_CODE on

the ORDER table.
 Define a foreign key on CUSTOMER_ID of ORDER table referring to

CUSTOMER_ID of CUSTOMER table.
 Define a foreign key on PRODUCT_CODE of ORDER table referring

to PRODUCT_CODE of PRODUCT table.

 List the customer names in the order of decreasing quantity ordered.

 Calculate the average selling price of all products.

 List the customer names for which we have orders in hand.

 List the details of all products whose price is less than average price
of the products.

 List the customers who have ordered for the same products.

 Get the name, price and quantity in stock of the costliest product.

5.10 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Database Management Systems, Third Edition by RamaKrishnan,
Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz, Korth,
Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

98

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin, Tata
McGraw-Hill

 SQL, PL/SQL The programming language of Oracle, Bayross Ivan,
BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and Navathe
B. Shamkant, Pearson

5.11 ONLINE REFERENCES

Wikipedia Link

http://en.wikipedia.org/wiki/SQL

Oracle Database PL/SQL language Reference 11g Release 2

(11.2), part number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dyn.htm

99

Unit - III

6

INTRODUCTION TO PL/SQL

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 PL/SQL Overview

6.2.1 PL/SQL Engine

6.2.2 Advantages of PL/SQL

6.3 PL/SQL blocks

6.3.1 PL/SQL Block Structure

6.3.2 PL/SQL Subprograms

6.3.3 PL/SQL Anonymous Blocks

6.4 PL/SQL Identifiers

6.4.1 Reserved words and Keywords

6.4.2 Predefined Identifiers

6.4.3 User-defined Identifiers

6.4.3.1 Ordinary User-Defined Identifiers

6.4.3.2 Quoted User-Defined Identifiers

6.5 PL/SQL Placeholders

6.5.1 PL/SQL Variables

6.5.2 PL/SQL Constants

6.6 PL/SQL DATA TYPES

6.6.1 SCALAR DATA TYPE

6.6.1.1 Character Data Type

6.6.1.2 Numeric Data Type

6.6.1.3 Boolean Data Type

6.6.1.4 DateTime Data Type

6.7 %TYPE attribute

6.8 USING BIND VARIABLES

6.9 SEQUENCES in PL/SQL Expressions

100

6.10 Summary

6.11 Review Questions

6.12 Bibliography, References and Further Reading

6.13 Online References

6.0 OBJECTIVES

At the end of this chapter you will be able to

11. Understand Basic Concepts of PL/SQL coding,
12. Understand variables, identifiers and its types,
13. Different data types,
14. Different types of PL/SQL blocks,
15. The %TYPE Attribute and Sequences in PL/SQL Expressions.

6.1 INTRODUCTION

In Oracle, there is a special language available for developers to

code stored procedures that seamlessly integrate with database object

access via the language of database objects, SQL. However, this

language offers far more execution potential than simple updates, selects,

inserts, and deletes. This language offers a procedural extension that

allows for modularity, variable declaration, loops and other logic

constructs, and advanced error handling. This language is known as

PL/SQL. PL/SQL stands for Procedural Language extension of SQL.

6.2 PL/SQL OVERVIEW

PL/SQL was developed by Oracle Corporation in the early 90’s

to enhance the capabilities of SQL. PL/SQL is a combination of SQL

along with the procedural features of programming languages. In other

words, it is a database-oriented programming language that is a powerful

extension of SQL with procedural capabilities. The key strength of

PL/SQL is its tight integration with the Oracle database.

Being a procedural language, it has many standard capabilities including

Variable Definition and Assignment
Conditional Processing
Loop Constructs
Error Handling
Seamless Integration of SQL and SQL Functions

6.2.1 PL/SQL Engine

The PL/SQL engine is the tool used to define, compile, and
run PL/SQL program units. The engine can be installed in the
database or in an application development tool, such as Oracle
Forms. In either environment, the PL/SQL engine accepts as input

101

any valid PL/SQL unit. The engine runs procedural statements, but
sends SQL statements to the SQL engine in the database, as
shown in the figure below.

Typically, the database processes PL/SQL units. When an
application development tool processes PL/SQL units, it passes
them to its local PL/SQL engine. If a PL/SQL unit contains no SQL
statements, the local engine processes the entire PL/SQL unit. This
is useful if the application development tool can benefit from
conditional and iterative control.

For example, Oracle Forms applications frequently use SQL
statements to test the values of field entries and do simple
computations. By using PL/SQL instead of SQL, these applications
can avoid calls to the database.

6.2.2 Advantages of PL/SQL

PL/SQL has these advantages:

 Block Structure: PL SQL consists of blocks of code, which can be

nested within each other. Each block forms a unit of a task or a logical

module. PL/SQL Blocks can be stored in the database and reused.

 Tight Integration with SQL: PL/SQL is tightly integrated with SQL,

the most widely used database manipulation language. For example:

PL/SQL lets you use all SQL data manipulation, cursor control, and

transaction control statements, and all SQL functions, operators, and

pseudo-columns. It also fully supports SQL data types.

102

 Procedural Language Capability: PL SQL consists of procedural

language constructs such as conditional statements (if else

statements) and loops like (FOR loops).

 High Performance: PL/SQL lets you send a block of statements to

the database, significantly reducing traffic between the application and

the database.

 High Productivity: PL/SQL lets you write compact code for

manipulating data. Just as a scripting language like PERL can read,

transform, and write data in files, PL/SQL can query, transform, and

update data in a database.

 Portability: You can run PL/SQL applications on any operating

system and platform where Oracle Database runs.

 Scalability: PL/SQL stored subprograms increase scalability by

centralizing application processing on the database server. The

shared memory facilities of the shared server let Oracle Database

support thousands of concurrent users on a single node.

 Manageability: PL/SQL stored subprograms increase manageability

because you can maintain only one copy of a subprogram, on the

database server, rather than one copy on each client system. Any

number of applications can use the subprograms, and you can

change the subprograms without affecting the applications that invoke

them.

 Support for Object-Oriented Programming: PL/SQL supports

object-oriented programming with "Abstract Data Types".

 Support for Developing Web Applications: PL/SQL lets you create

applications that generate web pages directly from the database,

allowing you to make your database available on the Web and make

back-office data accessible on the intranet.

 Support for Developing Server Pages: PL/SQL Server Pages

(PSPs) let you develop web pages with dynamic content. PSPs are an

alternative to coding a stored subprogram that writes the HTML code

for a web page one line at a time.

 Error Handling: PL/SQL handles errors or exceptions effectively

during the execution of a PL/SQL program. Once an exception is

103

caught, specific actions can be taken depending upon the type of the

exception or it can be displayed to the user with a message.

6.3 PL/SQL BLOCKS

PL/SQL provides a server-side, stored procedural language
that is easy-to-use, seamless with SQL, robust, portable, and
secure. You can access and manipulate database data using
procedural schema objects called PL/SQL blocks. The basic unit in
PL/SQL is a block, which groups related declarations and
statements. All PL/SQL programs are made up of blocks, which can
be nested within each other.

PL/SQL blocks generally are categorized as follows:

 A subprogram is a PL/SQL block that is stored in the database
and can be called by name from an application. When you
create a subprogram, the database parses the subprogram and
stores its parsed representation in the database. You can
declare a subprogram as a procedure or a function.

 An anonymous block is a PL/SQL block that appears in your
application and is not named or stored in the database. In many
applications, PL/SQL blocks can appear wherever SQL
statements can appear.

6.3.1 PL/SQL Block Structure

HEADER -- Header part (optional)

<< label >> (optional)

DECLARE -- Declarative part (optional)

-- Declarations of local types, variables, & subprograms

BEGIN -- Executable part (required)

-- Statements (which can use items declared in declarative part)

[EXCEPTION -- Exception-handling part (optional)

-- Exception handlers for exceptions (errors) raised in executable part]

END;

A PL/SQL Block consists of the following sections:

(19) The Header section (optional).

(20) The Declaration section (optional).

104

(21) The Execution section (mandatory).

(22) The Exception (Error Handling) section (optional).

 Header Section:
The Header section of a PL/SQL Block is relevant only for

subprograms. The Header determines the way that the subprogram must

be called. The header includes the name, parameter list and RETURN

clause (for a function only).

 Declaration Section:
The Declaration section of a PL/SQL Block starts with the

reserved keyword DECLARE. This section is optional and is used to

declare any placeholders like variables, constants, records and cursors,

which are used to manipulate data in the execution section. Placeholders

may be any of Variables, Constants and Records, which stores data

temporarily. Cursors are also declared in this section.

 Execution Section:
The Execution section of a PL/SQL Block starts with the reserved

keyword BEGIN and ends with END. This is a mandatory section and is

the section where the program logic is written to perform any task. The

programmatic constructs like loops, conditional statement and SQL

statements form a part of execution section.

 Exception Section:
The Exception section of a PL/SQL Block starts with the reserved

keyword EXCEPTION. This section is optional. Any errors in the program

can be handled in this section, so that the PL/SQL Blocks terminates

gracefully. If the PL/SQL Block contains exceptions that cannot be

handled, the Block terminates abruptly with errors.

Every statement in the above three sections must end with a

semicolon (;). PL/SQL blocks can be nested within other PL/SQL blocks.

Comments can be used to document code.

6.3.2 PL/SQL Subprograms

A PL/SQL subprogram is a named PL/SQL block that permits the

caller to supply parameters that can be input only, output only, or input

and output values. A subprogram solves a specific problem or performs

related tasks and serves as a building block for modular, maintainable

database applications.

A subprogram is either a procedure or a function. Procedures and

functions are identical except that functions always return a single value

to the caller, whereas procedures do not. Procedures and functions are

explained in detail in UNIT V.

105

 6.3.3 PL/SQL Anonymous Blocks

An anonymous block is an unnamed, non-persistent PL/SQL unit. It
is a block of PL/SQL that’s coded within a script. Typical uses for
anonymous blocks include:

19. Initiating calls to subprograms and package constructs
20. Isolating exception handling
21.Managing control by nesting code within other PL/SQL

blocks

Anonymous blocks do not have the code reuse advantages of
stored subprograms.

The syntax for an anonymous PL/SQL block:

DECLARE
Variable declaration

BEGIN
Program Execution

EXCEPTION
Exception handling

END;

An anonymous block begins with the DECLARE optional section,

the header section is altogether missing from an anonymous block.

For Example,

To print a message “Hello, Welcome to the world of PL SQL”

BEGIN

DBMS_OUTPUT.PUT_LINE (‘Hello, Welcome to the world of PL SQL’);

END;

/

To execute a PL/SQL block you must code a front slash (/) after the END

keyword.

DBMS_OUTPUT.PUT_LINE is a function that is used to generate output

on the screen. There are built-in packages that offer a number of ways to

generate output from within the PL/SQL program.

6.4 PL/SQL IDENTIFIERS

Identifiers are used to name PL/SQL program items & units which

include

 Constants

 Variables

 Exceptions

106

 Cursors

 Subprograms

 Packages

 Keywords

 Labels

 Reserved words

Rules for naming identifiers

20. It must start with a letter optionally followed by more letters, numerals,

dollar signs, underscores, and number signs.

21. Other characters such as hyphens, slashes, and spaces are not

allowed.

22. Any reserved keyword in PL/SQL cannot be used as an identifier

23. Identifiers in PL/SQL are not case – sensitive. For e.g. the identifiers

lastname, LastName and LASTNAME are the same.

Identifiers can be divided into the following types:

 Reserved words and keywords

 Predefined identifiers

 User-defined identifiers

6.4.1 Reserved words and Keywords

Reserved words and keywords are identifiers that have special

syntactic meaning in PL/SQL. You cannot use them as ordinary

user-defined identifiers. Some examples of reserved words and

keywords are ALL, ALTER, BEGIN, ADD, CALL, GENERAL, HEAP,

HASH etc.

6.4.2 Predefined Identifiers

Predefined identifiers are declared in the predefined package

STANDARD. An example of a predefined identifier is the exception

INVALID_NUMBER.

For a list of predefined identifiers, use this query:

SELECT TYPE_NAME FROM ALL_TYPES WHERE

PREDEFINED='YES';

You can use predefined identifiers as user-defined identifiers, but it is not

recommended. Your local declaration overrides the global declaration

6.4.3 User-defined Identifiers

A user-defined identifier is:

 Composed of characters from the database character set
 Either ordinary or quoted

107

6.4.3.1 Ordinary User-Defined Identifiers

An ordinary user-defined identifier:

 Begins with a letter

 Can include letters, digits, and these symbols:

◦ Dollar sign ($)

◦ Number sign (#)

◦ Underscore (_)

 Is not a reserved word.

Examples of acceptable ordinary user-defined identifiers:

X
t2
phone#
credit_limit
LastName
oracle$number
money$$$tree
SN##
try_again_

6.4.3.2 Quoted User-Defined Identifiers

A quoted user-defined identifier is enclosed in double
quotation marks. Between the double quotation marks, any
characters from the database character set are allowed except
double quotation marks, new line characters, and null characters.
For example, these identifiers are acceptable:

"X+Y"
"last name"
"on/off switch"
"employee(s)"
"*** header info ***"

 6.5 PL/SQL Placeholders

Placeholders are temporary storage area. Placeholders can be

any of Variables, Constants and Records. Oracle defines placeholders

to store data temporarily, which are used to manipulate data during the

execution of a PL SQL block.

Depending on the kind of data you want to store, you can define

placeholders with a name and a datatype. Few of the datatypes used to

define placeholders are as given below.

Number (n,m) , Char (n) , Varchar2 (n) , Date , Long etc.

6.5.1 PL/SQL Variables

108

These are placeholders that store the values that can change

through the PL/SQL Block. In order to use a variable, you need to declare

it in the declaration section of the PL/SQL block.

The General Syntax to declare a variable is:

variable_name datatype [NOT NULL := value];

 variable_name is the name of the variable.

 datatype is a valid PL/SQL datatype.

 NOT NULL is an optional specification on the variable that is used

when you want to compulsorily initialize a variable with a value

before using it.

 value is also an optional specification, where you can initialize a

variable.

 Each variable declaration is a separate statement and must be

terminated by a semicolon.

For example, if you want to store the current salary of an employee, you

can use a variable.

DECLARE

salary number (6);

“salary” is a variable of datatype number and of length 6.

The value of a variable can change in the execution or exception

section of the PL/SQL Block. We can assign values to variables in the two

ways given below.

 We can directly assign values to variables.

The General Syntax is:

variable_name:= value;

 We can assign values to variables directly from the database

columns by using a SELECT.. INTO statement. The General

Syntax is:

SELECT column_name

INTO variable_name

FROM table_name

[WHERE condition];

Example: The below program will get the salary of an employee with id

'1116' and display it on the screen.

109

DECLARE

var_salary number(6);

var_emp_id number(6) = 1116;

BEGIN

SELECT salary

INTO var_salary

FROM employee

WHERE emp_id = var_emp_id;

dbms_output.put_line(var_salary);

dbms_output.put_line('The employee ' || var_emp_id || ' has
salary ' || var_salary);

END;

/

Scope of Variables

PL/SQL allows the nesting of Blocks within Blocks i.e, the

Execution section (BEGIN block) of an outer block can contain inner

blocks. Therefore, a variable which is accessible to an outer Block is also

accessible to all nested inner Blocks. The variables declared in the inner

blocks are not accessible to outer blocks. Based on their declaration we

can classify variables into two types.

 Local variables - These are declared in a inner block and cannot

be referenced by outside Blocks.

 Global variables - These are declared in a outer block and can

be referenced by its itself and by its inner blocks.

6.5.2 PL/SQL Constants

A constant is the name of a memory location which stores a value

used in a PL/SQL block that remains unchanged throughout the program.

Similar to a variable a constant also needs to be declared in the

declaration section.

The General Syntax to declare a constant is:

constant_name CONSTANT data_type := VALUE;

 constant_name is the name of the constant.

 datatype is a valid PL/SQL datatype.

 CONSTANT is a reserved word that ensures that the value of the

memory location does not change.

 value is a specification, where you can initialize the constant.

110

For example:

pi CONSTANT NUMBER (5,4) := 3.1412;

6.6 PL/SQL DATA TYPES

Every PL/SQL constant, variable, parameter, and function return value

has a data type that determines its storage format and its valid values and

operations.

Data types in PL/SQL can be divided into:

 Scalar Data Types – used to store single value with no internal
components. Examples: boolean, number, etc.

 Composite Data Types – used to store values that have internal
components. Examples: collections and records.

 Reference Data Types – used to hold values, called pointers, used to
designate other program items.

 LOB Data Types – use to hold values, called LOB locators, that
specify the location of large objects, such as text blocks or graphic
images, that are stored separately from other database data.

Note: In this chapter, we will discuss only about scalar data types. The

remaining data types will be discussed in further chapters.

111

6.6.1 SCALAR DATA TYPE

A scalar type has no internal components. It holds a single value,
such as number or character string. The scalar types fall into 4
families, which store numeric, character, boolean, & datetime
data.

6.6.1.1 Character Data Type

The PL/SQL data type Character stores character (alphanumeric) data in

strings. The most commonly used character data type is VARCHAR2,

which is the most efficient option for storing character data. The different

character data types available for use in PL/SQL programs are

CHAR, NCHAR, VARCHAR2, NVARCHAR2, LONG, RAW, STRING,

ROWID etc.

6.6.1.2 Numeric Data Type

The PL/SQL data type Numeric stores fixed and floating-point

numbers, zero, and infinity. Some numeric types also store values that

are the undefined result of an operation, which is known as "not a

number" or NAN. The most commonly used numeric data type is

NUMBER. The different numeric data types available for use in PL/SQL

programs are

BINARY_FLOAT, BINARY_INTEGER, DECIMAL, FLOAT, INTEGER,

NUMBER, PLS_INTEGER, REAL, SMALLINT, NATURAL, etc.

6.6.1.3 Boolean Data Type

The PL/SQL data type BOOLEAN stores logical values, which are

the Boolean values TRUE and FALSE and the value NULL. NULL

represents an unknown value.

The only value that you can assign to a BOOLEAN variable is a

BOOLEAN expression. Because SQL has no data type equivalent to

BOOLEAN, you cannot:

 Assign a BOOLEAN value to a database table column.

 Select or fetch the value of a database table column into a

BOOLEAN variable.

 Use a BOOLEAN value in a SQL statement, SQL function, or

PL/SQL function invoked from a SQL statement.

112

6.6.1.4 DateTime Data Type

The PL/SQL data type DateTime stores date and time values with

fractional precision of seconds. The different DateTime data types

available for use in PL/SQL programs are

DATE, TIME, TIMESTAMP, TIMESTAMP WITH TIME ZONE, INTERVAL

YEAR TO MONTH, INTERVAL DAY TO SECOND, etc.

6.7 %TYPE ATTRIBUTE

In general, the variables that deal with table columns should have

the same datatype as the column itself. Rather than look it up, the

developer can use PL/SQL’s special syntactic feature that allows the

developer simply to identify the table column to which this variable’s

datatype should correspond. This syntax uses a special keyword known

as %TYPE.

The %TYPE attribute lets you declare a data item of the same

data type as a previously declared variable or column (without knowing

what that type is). The item declared with %TYPE is the referencing

item, and the previously declared item is the referenced item.

The referencing item inherits the following from the referenced item:

 Data type and size

 Constraints (unless the referenced item is a column)

The referencing item does not inherit the initial value of the

referenced item.

If the declaration of the referenced item changes, then the

declaration of the referencing item changes accordingly.

The %TYPE attribute is particularly useful when declaring variables to

hold database values. The syntax for declaring a variable of the same

type as a column is:

variable_name table_name.column_name%TYPE;

For Example, Declaring Variable of Same Type as Column

DECLARE
surname employees.last_name%TYPE;

BEGIN
DBMS_OUTPUT.PUT_LINE('surname=' || surname);

END;
/

113

6.8 USING BIND VARIABLES

With a regular variable, each time a new entry occurs at the cache

even if the statements are similar. Each new statement must be verified,

parsed and have an execution plan generated and stored. Further holding

so many similar statements is a waste of memory.

Bind variable is a special type of variable that has several

advantages over a regular variable.

First, SQL statements that use bind variables usually run more

efficiently than SQL statements that use regular variables. As the bind

variables reuse the SQL statements by only changing the value of the

bind variable resulting in faster and efficient processing.

Second, a bind variable can be used in regular SQL statements that are

executed outside of the PL/SQL block.

Third, a bind variable stays in scope for an entire script. More accurately,

the bind variable stays in scope for the entire session. As a result, you

can use a bind variable across all statements in a script.

You can create bind variables with the VARIABLE command. The syntax

is:

VARIABLE variable_name data_type;

For example,

VARIABLE ret_value NUMBER;

After you declare a bind variable, you can reference it by prefacing it with

a colon (:). For example,

:ret_val := 1;

6.9 SEQUENCES IN PL/SQL EXPRESSIONS

Sequences in PL/SQL expressions execute in a similar way as

sequences in SQL expressions. After a sequence is created, you can

access its values in SQL statements with the CURRVAL pseudocolumn,

which returns the current value of the sequence, or the NEXTVAL

pseudocolumn, which increments the sequence and returns the new

value.

Earlier to Oracle 11g referring to Sequence values within PL/SQL

required using SELECT INTO variable clause which is not very intuitive.

Consider the following PL/SQL code:

CREATE SEQUENCE seq_temp START WITH 100 INCREMENT BY 1;

114

SET SERVEROUTPUT ON

DECLARE

a number;

BEGIN

SELECT seq_temp.NEXTVAL INTO a FROM dual;

DBMS_OUTPUT.PUT_LINE(a);

END;

/

Note that before Oracle 11g we could not assign a sequence value to a

variablein PL/SQL. The only way to use sequence values within PL/SQL

was to use SELECT sequence.NEXTVAL INTO variable.

Oracle 11g allows to refer to sequence values in a very intuitive way

using variables. Consider the above code rewritten as follows:

CREATE SEQUENCE seq_temp START WITH 100 INCREMENT BY 1;

SET SERVEROUTPUT ON

DECLARE

a number;

BEGIN

a := seq_temp.NEXTVAL;

DBMS_OUTPUT.PUT_LINE(a);

END;

/

As of Oracle Database 11g Release 1, you can use

sequence_name.CURRVAL and sequence_name.NEXTVAL in a PL/SQL

expression wherever you can use a NUMBER expression. However:

 Using sequence_name.CURRVAL or sequence_name.NEXTVAL

to provide a default value for an ADT method parameter causes a

compilation error.

 PL/SQL evaluates every occurrence of

sequence_name.CURRVAL and sequence_name.NEXTVAL

(unlike SQL, which evaluates a sequence expression for every

row in which it appears).

115

Note: Each time you reference sequence_name.NEXTVAL, the

sequence is incremented immediately and permanently, whether you

commit or roll back the transaction.

6.10 SUMMARY

 PL/SQL was developed by Oracle Corporation in the early 90’s to
enhance the capabilities of SQL.

 PL/SQL is a combination of SQL along with the procedural features of
programming languages.

 The PL/SQL engine is the tool used to define, compile, and run
PL/SQL program units.

 The basic unit in PL/SQL is a block, which groups related declarations
and statements. All PL/SQL programs are made up of blocks, which
can be nested within each other.

 PL/SQL blocks are categorized into subprograms (procedures and
functions) and anonymous block.

 A PL/SQL Block consists of the following sections:

◦ The Header section.

◦ The Declaration section.

◦ The Execution section.

◦ The Exception (Error Handling) section.

 A PL/SQL subprogram is a named PL/SQL block that is either a

procedure or a function.

 An anonymous block is an unnamed, non-persistent PL/SQL unit.

 Identifiers are used to name PL/SQL program items & units.

 Identifiers can be divided into the following types:

◦ Reserved words and keywords

◦ Predefined identifiers

◦ User-defined identifiers

 Oracle defines placeholders to store data temporarily, which are used

to manipulate data during the execution of a PL SQL block.

116

 Placeholders can be any of Variables, Constants and Records.

 Every PL/SQL constant, variable, parameter, and function return

value has a data type that determines its storage format and its valid

values and operations.

 Data types in PL/SQL can be divided into

◦ Scalar Data Types

◦ Composite Data Types

◦ Reference Data Types

◦ LOB Data Types

 A scalar type has no internal components. It holds a single value,

such as number or character string.

 The scalar types fall into 4 families, which store numeric, character,

boolean, & datetime data.

 The %TYPE attribute lets you declare a data item of the same data

type as a previously declared variable or column (without knowing

what that type is).

 Bind variable is a special type of variable that runs more efficiently

than SQL statements that use regular variables.

 Sequences in PL/SQL expressions execute in a similar way as

sequences in SQL expressions using the CURRVAL pseudocolumn

and the NEXTVAL pseudocolumn.

6.11 REVIEW QUESTIONS

 Explain PL/SQL engine in detail.

 List and explain the advantages of PL/SQL.

 What is a PL/SQL block. Explain its types.

 Explain the structure of PL/SQL block.

 Explain PL/SQL anonymous block.

 What is an identifier? What are the rules for naming them.

 Explain the different types of identifiers.

 Explain PL/SQL variables in detail.

 Explain the different data types in PL/SQL.

117

 Explain the different types of scalar data types used in PL/SQL.

 Why is %TYPE attribute used?

6.12 BIBLIOGRAPHY, REFERENCES AND FURTHER
READING

 Database Management Systems, Third Edition by RamaKrishnan,
Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz, Korth,
Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin, Tata
McGraw-Hill

 SQL, PL/SQL The programming language of Oracle, Bayross Ivan,
BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and Navathe
B. Shamkant, Pearson

6.13 ONLINE REFERENCES

O'Reilly "Mastering Oracle SQL"

http://oreilly.com/catalog/mastorasql/

Oracle Database PL/SQL language Reference 11g Release 2 (11.2), part

number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dyn.htm

Chapter 5 Introducing PL/SQL

http://www.cs.kent.edu/~wfan/link/dbapre/dbatest/54905f.htm

Oracle SQL & PL/SQL

http://sql-plsql.blogspot.in/2007/05/oracle-plsql-cursors-with-

parameters.html

http://sql-plsql.blogspot.in/2007/03/plsql-introduction.html

118

PL/SQL tutorial

http://plsql-tutorial.com/index.htm

http://www.academictutorials.com/pl-sql/introduction.asp

Wikipedia links

http://en.wikipedia.org/wiki/PL/SQL

119

7

WRITING EXECUTABLE STATEMENTS

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Basic Guidelines for PL/SQL block syntax

7.2.1 Rules of block Structure

7.2.2 Scope and Visibility of Identifiers

7.2.3 Handling variables in PL/SQL

7.2.4 Guidelines for PL/SQL coding

7.3 Comments in Code

7.4 Nested Blocks

7.5 DATA CONVERSION

7.5.1 Conversion Functions

7.6 Operators in PL/SQL

7.6.1 Mathematical Operators

7.6.2 Comparison or Relational Operators

7.6.3 Logical or Boolean Operators

7.6.4 Special Operators

7.7 Summary

7.8 Review Questions

7.9 Lab Assignment

7.10 Bibliography, References and Further Reading

7.11 Online References

120

7.0 OBJECTIVES

At the end of this chapter you will be able to:

(23) Understand guidelines for PL/SQL block syntax
(24) Convert Data Types
(25) Use Nested Blocks
(26) Add Comments to your code
(27) Understand Operators used in PL/SQL

7.1 INTRODUCTION

PL/SQL stands for Procedural Language/SQL. PL/SQL extends

SQL by adding constructs found in procedural languages, resulting in a

structural language that is more powerful than SQL. In other words,

PL/SQL is a procedural programming language that enhances the

functionalities of SQL. We can write various types of queries with SQL

statements but with PL/SQL we can group the related queries together to

perform a particular task or an activity.

PL/SQL offers many advantages over other programming

languages for handling the logic and business rule enforcement of

database applications. It is a straightforward language with all the

common logic constructs associated with a programming language, plus

many things other languages don’t have, such as robust error handling

and modularization of code blocks. The PL/SQL code used to interface

with the database is also stored directly on the Oracle database, and is

the only programming language that interfaces with the Oracle database

natively and within the database environment.

7.2 BASIC GUIDELINES FOR PL/SQL BLOCK SYNTAX

We have already discussed the basic steps of how to create a

PL/SQL block. Following are certain guidelines to PL/SQL programming

to improve readability and maintainability of code.

7.2.1 Rules of block Structure

 Every unit of PL/SQL must constitute a block. As a minimum there
must be the delimiting words BEGIN and END around the executable
statements.

 SELECT statements within PL/SQL blocks are embedded SQL (an
ANSI category). As such they must return one row only. SELECT
statements that return no rows or more than one row will generate an
error. If you want to deal with groups of rows you must place the
returned data into a cursor. The INTO clause is mandatory for

121

SELECT statements within PL/SQL blocks (which are not within a
cursor definition), you must store the returned values from a SELECT.

 If PL/SQL variables or objects are defined for use in a block then you
must also have a DECLARE section.

 If you include an EXCEPTION section the statements within it are only
processed if the condition to which they refer occurs. Block execution
is terminated after an exception handling routine is executed.

 PL/SQL blocks may be nested, nesting can occur wherever an
executable statement could be placed (including the EXCEPTION
section).

 7.2.2 Scope and Visibility of Identifiers

The scope of an identifier is the region of a PL/SQL unit from
which you can reference the identifier. The visibility of an identifier is the
region of a PL/SQL unit from which you can reference the identifier
without qualifying it. An identifier is local to the PL/SQL unit that declares
it. If that unit has subunits, the identifier is global to them.

If a subunit redeclares a global identifier, then inside the subunit,

both identifiers are in scope, but only the local identifier is visible. To

reference the global identifier, the subunit must qualify it with the name of

the unit that declared it. If that unit has no name, then the subunit cannot

reference the global identifier.

A PL/SQL unit cannot reference identifiers declared in other units

at the same level, because those identifiers are neither local nor global to

the block.

7.2.3 Handling variables in PL/SQL

22. Variables must be declared first before the usage. The PL/SQL
variables can be a scalar type such as DATE, NUMBER, VARCHAR2,
BOOLEAN, LONG and CHAR, or a composite type, such as
VARRAY.

23. Only TRUE, FALSE or NULL can be assigned to BOOLEAN type of
variables.

24. AND, OR, NOT operators can be used to connect BOOLEAN values.

25. %TYPE attribute can be used to define a variable which is of the
same type as a database column's type definition.

7.2.4 Guidelines for PL/SQL coding

 Capitalize all keywords, and use lowercase for the other code in
a PL/SQL statement.

 Separate the words in names with underscores, as in
last_name, first_name.

 Start each clause on new line.

 Break long clauses into multiple lines and indent continued
lines.

 Use comments only for portions of code that are difficult to

122

understand. Make sure comments are correct and up-to-date.

 Line breaks, white space, indentation and capitalization have no
effect on the operation of statement.

 Comments can be used to document what a statement does or
what specific parts of a statement do.

 Variables and function identifiers should not have the same
name as a database column name.

 Identifiers must begin with an alphabet.

 Code blocks can be nested.

 It is recommended that variable names are prefixed by v_, and
parameter names in procedures/functions are prefixed by _p.

7.3 COMMENTS IN CODE

When executing PL/SQL program, comments are ignored by the

PL/SQL compiler. Adding comments promotes readability and

maintainability of the code. Comments are also used to provide

information about the various logics applied for better understanding of

the program code. Some programmers even specify the name and date

on which a program was developed along with the purpose for proper

documentation. Comments cannot be nested within each other. PL/SQL

supports two types of comments.

 Single-Line comments: Begins with double hyphen (--) anywhere on
a line and extends to the end of line.

 Multi-Line comments: Begins with slash-asterisk (/*), ends with an
asterisk-slash (*/), and can span multiple rows.

The following program illustrates the use of comments to improve

readability of the PL/SQL program.

DECLARE
some_condition BOOLEAN;
pi NUMBER := 3.1415926;
radius NUMBER := 15;
area NUMBER;

BEGIN
-- Perform some simple tests and assignments

IF 2 + 2 = 4 THEN
some_condition := TRUE;

/* We expect this THEN to always be performed */
END IF;

123

/* This line computes the area of a circle using pi,
which is the ratio between the circumference and diameter.
After the area is computed, the result is displayed. */

area := pi * radius**2;
DBMS_OUTPUT.PUT_LINE('The area is: ' || TO_CHAR(area));

END;
/

7.4 NESTED BLOCKS

The block, which groups related declarations and statements, is

the basic unit of a PL/SQL source program. It has an optional declarative

part, a required executable part, and an optional exception-handling part.

Declarations are local to the block and cease to exist when the block

completes execution. Blocks can be nested. Because a block is an

executable statement, it can appear in another block wherever an

executable statement is allowed.

PL/SQL allows the nesting of blocks within blocks i.e., the

Execution section of an outer block can contain inner blocks. Therefore, a

variable which is accessible to an outer block is also accessible to all

nested inner blocks. The variables declared in the inner blocks are not

accessible to outer blocks. Based on their declaration we can classify

variables into two types.

 Local variables - These are declared in a inner block and cannot be

referenced by outside Blocks.

 Global variables - These are declared in a outer block and can be

referenced by its itself and by its inner blocks.

Consider the following program.

We are creating two variables (x, y) in the outer block and using

them in the inner block. We are also creating two variables (v_sum,

v_avg) in the inner block and using them in the inner block. The variables

created in the outer block are global variables and can be used in any

part of the program. While variables declared in the inner block cannot be

accessible in the outer block.

SET SERVEROUTPUT ON

DECLARE

x NUMBER (10);

y NUMBER (10);

124

BEGIN

DECLARE

v_sum NUMBER (10);

v_avg NUMBER (10,2);

BEGIN

x := 10;

y := 20;

v_sum := x+y;

DBMS_OUTPUT.PUT_LINE('sum := '|| v_sum);

v_avg := (x+y)/2;

DBMS_OUTPUT.PUT_LINE('average := '|| v_avg);

END;

END;

7.5 DATA CONVERSION

Oracle provides conversion functions that will easily convert

values of one data type to another. Two types of conversion are allowed

in Oracle.

 Implicit Conversion
 Explicit Conversion

Oracle will automatically perform implicit conversions of data

types for you, but it can lead to performance problems in your

applications. Oracle can perform explicit conversions by using

conversion functions discussed in Chapter 2. The following program

illustrates the implicit conversion from NUMBER to VARCHAR2 and from

VARCHAR2 to DATE in Oracle.

SET SERVEROUTPUT ON

/* To test implicit conversion in Oracle */

DECLARE

x NUMBER (10); -- declare number 1

y NUMBER (10); -- declare number 2

z NUMBER (10);

p VARCHAR2 (10); -- declare p as character variable

q VARCHAR2 (10);

r VARCHAR2 (10);

d DATE;

cd VARCHAR2 (20);

125

BEGIN

x := 10;

y := 20;

z := x+y;--adding 2 numeric values and storing result in z

p := x;

q := y;

r := p+q;--adding 2 character values and storing result in r

cd := '10-NOV-2011';

d := cd; --converts character data into date type of format

-- printing sum of two numbers

DBMS_OUTPUT.PUT_LINE('sum of x and y := '|| z);

-- printing sum of two VARCHAR2 data type values

DBMS_OUTPUT.PUT_LINE('sum of p and q := '|| r);

-- printing date in system format

DBMS_OUTPUT.PUT_LINE('Meeting is on '|| d);

END;

/

7.5.1 Conversion Functions

Oracle has several built-in functions that are designed to convert

information from one data type to another data type. The most commonly

used conversion functions are:

Function Name Description Example

TO_CHAR() The TO_CHAR() conversion

function converts both

numerical values and date

values to data type

VARCHAR2.

TO_CHAR(10101)

TO_DATE() The TO_DATE() conversion

function converts character

data to data type DATE.

TO_DATE('31/07/2009')

TO_NUMBER The TO_NUMBER

conversion function converts

character data to data type

number.

TO_NUMBER('1010')

126

7.6 OPERATORS IN PL/SQL

To perform various mathematical, logical and comparison

operations on variables and constants we need operators. An operator

manipulates data items and returns a result. Syntactically, an operator

appears before or after an operand or between two operands. Operators

are represented by special characters or by keywords. For example, the

multiplication operator is represented by an asterisk (*). Operators

manipulate individual data items called operands or arguments. An

operand can be a variable, constant, literal, operator, function invocation,

or placeholder—or another expression.

PL/SQL operators can be divided into the following categories:

 Mathematical Operators
 Comparison/Relational Operators
 Logical/Boolean Operators
 Special Operators

7.6.1 Mathematical Operators

Mathematical Operators are used for computational purposes.

Operator Description

** Exponentiation Operator. Computes to the power of a

given number.

* Multiplication Operator.

/ Division Operator.

+ Addition Operator. Add two or more operands.

- Subtraction Operator. Subtract two or more operands.

- Negation Operator. Denotes a negative expression.

+ Plus Operator. Denotes a positive expression.

127

7.6.2 Comparison or Relational Operators

These operators are used to compare values.

Operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<>, !=, ~=, ^= Not equal to

7.6.3 Logical or Boolean Operators

If we want to check for more than one condition in a single select

query then we need to use Boolean operators. Boolean operators can

return only True or False for a given condition.

Operator Description

AND If any condition is False, then it returns False else True.

OR If any condition is True, then it returns True else False.

NOT Negates the given condition.

Following is the truth table for logical operators.

X Y X AND Y X OR Y NOT X

TRUE TRUE TRUE TRUE FALSE

128

TRUE FALSE FALSE TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE

7.6.4 Special Operators

Oracle provides some special operators which enhance the

capabilities of SQL statements. The special operators are: IN, IS NULL,

LIKE, BETWEEN and || (Concatenation).

Operator Description

IN Used to compare multiple values. Returns TRUE if value lies

within the specified set. Can be used with the NOT boolean

operator to negate the given condition.

BETWEEN Used to check whether a value lies in a specified range.

LIKE Used for pattern matching searches and returns TRUE if the

value matches the pattern and FALSE if it does not.

IS NULL Returns the BOOLEAN value TRUE if its operand is NULL or

FALSE if it is not NULL.

|| Used to concatenate character strings.

7.7 SUMMARY

 PL/SQL is a procedural programming language that enhances the
functionalities of SQL.

 We can write various types of queries with SQL statements but with
PL/SQL we can group the related queries together to perform a
particular task or an activity.

 PL/SQL is the only programming language that interfaces with the
Oracle database natively and within the database environment.

129

 Every unit of PL/SQL must constitute a block. As a minimum there
must be the delimiting words BEGIN and END around the executable
statements.

 If PL/SQL variables or objects are defined for use in a block then you
must also have a DECLARE section.

 PL/SQL blocks may be nested, nesting can occur wherever an
executable statement could be placed (including the EXCEPTION
section).

 The scope of an identifier is the region of a PL/SQL unit from which
you can reference the identifier.

 The visibility of an identifier is the region of a PL/SQL unit from which
you can reference the identifier without qualifying it.

 An identifier is local to the PL/SQL unit that declares it. If that unit has
subunits, the identifier is global to them.

 Variables must be declared first before the usage.

 %TYPE attribute can be used to define a variable which is of the
same type as a database column's type definition.

 When executing PL/SQL program, comments are ignored by the
PL/SQL compiler.

 Adding comments promotes readability and maintainability of the
code.

 PL/SQL supports two types of comments: Single-Line comments and
Multi-Line comments.

 PL/SQL allows the nesting of blocks within blocks i.e., the Execution
section of an outer block can contain inner blocks.

 Based on their declaration we can classify variables into two types:
Local variables and Global variables.

 Two types of conversion, from one data type to another, are allowed
in Oracle: Implicit Conversion and Explicit Conversion.

 An operator manipulates data items and returns a result. Operators
are represented by special characters or by keywords.

130

 PL/SQL operators can be divided into the following categories

◦ Mathematical Operators

◦ Comparison/Relational Operators

◦ Logical/Boolean Operators

◦ Special Operators

7.8 REVIEW QUESTIONS

 Write the various categories of operators used in PL/SQL.
 How is explicit conversion different from implicit conversion?
 Discuss about the scope of variables in the nested block of PL/SQL.
 Discuss the rules about the block structure in PL/SQL.
 Write a short note on comments in PL/SQL.

7.9 LAB ASSIGNMENTS

1. Write an anonymous PL/SQL block to take the first name and last

name from the user and print the variables using concatenation operator.

Assume records in the EMP table as shown below.

EMPNO ENAME HIREDATE DEPTNO GENDER SALARY COMM

111 Satish 19-DEC-2008 10 M 10,000 1000

222 Rashmi 01-JAN-1987 20 F 8000 550

333 Rishi 05-JUN-1976 10 M 7000 450

444 Anil 16-APR-1967 10 M 12,000 2000

555 Anita - 30 F - 1000

666 Nilesh 20-MAY-1987 20 M 13,000 -

777 Ruchi 11-JUN-2000 30 F - -

888 Sarika - - F - -

 Retrieve ALL records from the EMP table.

 Retrieve the empno, ename and salary for all employees.

131

 Retrieve the deptno, ename, salary and comm for all employees.

 Retrieve the deptno, empno and total salary as salary + 10% of
(salary+comm) for all employees.

 List the employees who have joined after 1st May 1987.

 List the male employees of department number 10 and 30.

 Display the employees who earned commission more than 1000 and
belong to department 10 or have salary more than 10,000/- but do not
belong to department 10.

 List employees with zero salary.

 List employees with either salary or commission unknown.

 Display the employees whose name contains 'SA'.

 Display the salary of employees as ZERO if unknown.

7.10 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Database Management Systems, Third Edition by RamaKrishnan,
Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz, Korth,
Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff Publishers
& Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin, Tata
McGraw-Hill

 SQL, PL/SQL The programming language of Oracle, Bayross Ivan,
BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and Navathe B.
Shamkant, Pearson

7.11 ONLINE REFERENCES

O'Reilly "Mastering Oracle SQL"

http://oreilly.com/catalog/mastorasql/

Oracle Database PL/SQL language Reference 11g Release 2 (11.2), part

number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dyn.htm

132

Chapter 5 Introducing PL/SQL

http://www.cs.kent.edu/~wfan/link/dbapre/dbatest/54905f.htm

Oracle SQL & PL/SQL

http://sql-plsql.blogspot.in/2007/05/oracle-plsql-cursors-with-

parameters.html

http://sql-plsql.blogspot.in/2007/03/plsql-introduction.html

PL/SQL tutorial

http://plsql-tutorial.com/index.htm

http://www.academictutorials.com/pl-sql/introduction.asp

Wikipedia links

http://en.wikipedia.org/wiki/PL/SQL

133

8

INTERACTION WITH THE ORACLE

SERVER

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 Invoking SELECT statement

8.2.1 Restrictions in SELECT INTO clause

8.3 Data Manipulation in the server using PL/SQL

8.4 SQL Cursor Concept

8.4.1 Implicit Cursors

8.5 Save And Discard Transactions

8.5.1 Implicit Rollbacks

8.5.2 Ending Transactions

8.6 Summary

8.7 Review Questions

8.8 Lab Assignment

8.9 Bibliography, References and Further Reading

8.10 Online References

8.0 OBJECTIVES

At the end of this chapter you will be able to:

 Invoke SELECT Statements in PL/SQL,
 Manipulate Data in the Server using PL/SQL,

134

 Understand the SQL Cursor concept,
 Use SQL Cursor Attributes to Obtain Feedback on DML,
 Save and Discard Transactions.

8.1 INTRODUCTION

No usage of PL/SQL is complete without presenting the ease of

use involved in interacting with the Oracle database. Any data

manipulation or change operation can be accomplished within PL/SQL

without the additional overhead typically required in other programming

environments. There is no ODBC interface, and no embedding is required

for use of database manipulation with PL/SQL.

In this chapter we will invoke SELECT statements in PL/SQL and

also manipulate data in the server. Then we will discuss the concept of

cursor in SQL along with how to use cursor attributes in DML. Finally we

shall have a look on how to save and discard transactions in a database.

8.2 INVOKING SELECT STATEMENT

The SELECT statement in SQL is used to extract data from the

one or more tables or views in the database. However, the SQL SELECT

statement cannot be used inside a PL/SQL block to retrieve records. In

order to retrieve data from one or more tables in Pl/SQL we need to use

the SELECT INTO statement.

The SELECT INTO statement retrieves values from one or more

database tables (as the SQL SELECT statement does) and stores them

in variables (which the SQL SELECT statement does not do). Using the

INTO clause we can specify the variables or record in which to store the

column values that the statement returns.

Syntax:

SELECT <column_name1>, <column_name2> INTO <var_name1>,

<var_name2>

FROM table_name;

8.2.1 Restrictions in SELECT INTO clause:

(28) Columns selected in the query must be returned into local
variables.

(29) The variables used must be matching with the columns in
data type.

(30) It is used in the executable section (BEGIN END) of a
PL/SQL block.

(31) The SELECT query must return only one row.

135

Consider the following example:

To get the details of employees who work for the HR department and gets

salary of 30000.

SET SERVEROUTPUT ON

DECLARE

v_name emp_detail.ename%TYPE;

v_age emp_detail.age%TYPE;

BEGIN

SELECT ename, age INTO v_name, V_age

FROM emp_detail WHERE empid =

(SELECT empid FROM emp

WHERE dept = 'HR' AND salary = 30000);

DBMS_OUTPUT.PUT_LINE ('name: ' || v_name || 'Age: ' || v_age);

END;

/

8.3 DATA MANIPULATION IN THE SERVER USING

PL/SQL

PL/SQL blocks can be used to manipulate data in the server using

INSERT, DELETE and UPDATE statements. PL/SQL provides the

following functionalities:

 Using SQL data manipulation languages in PL/SQL, data in the
tables can be manipulated.

 Using SQL data transactional commands in PL/SQL, changes of
data in the tables can be made permanent or revoked.

 All sorts of SQL functions can be used in PL/SQL.

 All operators that we are using in SQL statements can also be
used in PL/SQL.

 We can declare variables and constants in PL/SQL to store results
of a query during the process, which can be used later in PL/SQL
block.

136

In the following program, a row is added, updated and deleted from the

EMPLOYEE table using variables in PL/SQL to manipulate data in the

database tables.

SET SERVEROUTPUT ON

DECLARE

My_employee employee%ROWTYPE;

My_lastname VARCHAR2 := ‘SAMSON’;

My_firstname VARCHAR2 := ‘DELILAH’;

My_salary NUMBER := 49500;

BEGIN

SELECT *

INTO my_employee

FROM employee

WHERE empid = 49594;

UPDATE employee

SET salary = my_employee.my_salary + 10000

WHERE empid = my_employee.my_empid;

INSERT INTO employee (empid, lastname, firstname, salary)

VALUES (emp_sequence.nextval, my_lastname, my_firstname,

my_salary);

My_empid := 59495;

DELETE FROM employee

WHERE empid = my_empid;

END;

/

8.4 SQL CURSOR CONCEPT

Oracle performs a set of tasks for executing any SQL statement.

 Reserves an area in memory called private SQL area.
 Populates this area with appropriate data.
 Frees the memory area when execution completes.

Cursor is a pointer to the private SQL area that stores information

about processing a specific SELECT or DML statement. Within PL/SQL a

SELECT statement cannot return more than one row at a time. So in

order to process some group of rows for implementing certain logic to all

the records of that group, we need to use cursors. The set of rows

retrieved is called the active set; its size depends on how many rows

meet the query search condition.

137

For SQL statements, there are two types of cursors:

 Implicit cursor
 Explicit cursor

In this chapter we will discuss about implicit cursors. Explicit cursors have

been explained in the later chapters.

8.4.1 Implicit Cursors

An implicit cursor is a session cursor that is constructed and

managed by PL/SQL. PL/SQL opens an implicit cursor every time you run

a SELECT or DML statement. You cannot control an implicit cursor, but

you can get information from its attributes. An implicit cursor closes after

its associated statement runs; however, its attribute values remain

available until another SELECT or DML statement runs. Cursor

attributes return information about the state of the cursor.

The syntax for the value of an implicit cursor attribute is SQLattribute (for

example, SQL%FOUND). SQLattribute always refers to the most recently

run DML or SELECT INTO statement.

The implicit cursor attributes are:

 SQL%ISOPEN Attribute: Is the Cursor Open?

 SQL%FOUND Attribute: Were Any Rows Affected?

 SQL%NOTFOUND Attribute: Were No Rows Affected?

 SQL%ROWCOUNT Attribute: How Many Rows Were Affected?

The table given below lists the cursor attributes and the values that they

can return.

Cursor Attribute Cursor Variable Values for Cursor

%FOUND SQL%FOUND If no DML or SELECT INTO

statement has run, NULL.

If the most recent DML or

SELECT INTO statement

returned a row, TRUE.

If the most recent DML or

SELECT INTO statement did

not return a row, FALSE.

%NOTFOUND SQL%NOTFOUND If no DML or SELECT INTO

statement has run, NULL.

If the most recent DML or

SELECT INTO statement

returned a row, FALSE.

If the most recent DML or

SELECT INTO statement did

138

not return a row, TRUE.

%ROWCOUNT SQL%ROWCOUNT NULL if no DML or SELECT

INTO statement has run;

otherwise, a number greater

than or equal to zero.

%ISOPEN SQL%ISOPEN Always FALSE. The Oracle

database automatically opens

and closes the implicit cursor

associated with any DML or

SELECT statement and so

SQL%ISOPEN always returns

FALSE.

Consider the following program where we will display the values of

various CURSOR attributes.

SET SERVEROUTPUT ON

BEGIN

UPDATE tbl_bank_account SET status = 'INACTIVE'

WHERE branch = 'SAKI NAKA';

IF SQL%FOUND THEN

DBMS_OUTPUT.PUT_LINE ('Accounts Found for branch Saki Naka');

END IF;

IF SQL%NOTFOUND THEN

DBMS_OUTPUT.PUT_LINE ('No Accounts Found for

branch Saki Naka');

END IF;

IF SQL%ROWCOUNT > 0 THEN

DBMS_OUTPUT.PUT_LINE (SQL%ROWCOUNT ' ||

account(s) inactivated');

ELSE

DBMS_OUTPUT.PUT_LINE ('No account(s) inactivated');

END IF;

END;

/

139

8.5 SAVE AND DISCARD TRANSACTIONS

A transaction is a logical, atomic unit of work that contains one or

more SQL statements. A transaction groups SQL statements so that they

are either all committed, which means they are applied to the database,

or all rolled back, which means they are undone from the database.

Transaction processing is a feature that lets multiple users work on the

database concurrently, and ensures that each user sees a consistent

version of data and that all changes are applied in the right order.

A database transaction consists of one or more statements.

Specifically, a transaction consists of one of the following:

 One or more data manipulation language (DML) statements that

together constitute an atomic change to the database

 One data definition language (DDL) statement

Now each and every transaction has a specific beginning and end

point. A transaction begins when the user connects to the database and

performs the first DML statement or when the last transaction has ended

and a new DML query has started to execute. The COMMIT operation is

automatically executed when you execute a DDL or DCL or the user exits

normally by typing EXIT statement. In contrast, in order to guarantee that

the changes made by the DML statements are actually saved in the

database, the PL/SQL code should explicitly contain a commit statement.

The three transaction specifications available in PL/SQL are

commit, roll back and savepoint.

Transaction control is the management of changes made by

DML statements and the grouping of DML statements into transactions. In

general, application designers are concerned with transaction control so

that work is accomplished in logical units and data is kept consistent.

Transaction control involves using the following statements:

26. The COMMIT statement ends the current transaction and makes all

changes performed in the transaction permanent. COMMIT also

erases all savepoints in the transaction and releases transaction locks.

27. The ROLLBACK statement reverses the work done in the current

transaction; it causes all data changes since the last COMMIT or

ROLLBACK to be discarded. The ROLLBACK TO SAVEPOINT

statement undoes the changes since the last savepoint but does not

end the entire transaction.

140

28. The SAVEPOINT statement identifies a point in a transaction to which

you can later roll back.

The session in the following table illustrates the use of the above

statements

Time Session Explanation

t0 COMMIT; This statement ends any existing

transaction in the session.

t1 SET TRANSACTION NAME
'sal_update';

This statement begins a transaction

and names it sal_update.

t2 UPDATE employees
SET salary = 7000
WHERE last_name =

'Sharma';

This statement updates the salary for

Sharma to 7000.

t3 SAVEPOINT after_sharma_sal; This statement creates a savepoint

named after_sharma_sal, enabling

changes in this transaction to be rolled

back to this point.

t4 UPDATE employees
SET salary = 12000
WHERE last_name = 'Naik';

This statement updates the salary for

Naik to 12000.

t5 SAVEPOINT after_naik_sal; This statement creates a savepoint

named after_naik_sal, enabling

changes in this transaction to be rolled

back to this point.

t6 ROLLBACK TO SAVEPOINT
after_sharma_sal;

This statement rolls back the

transaction to t3, undoing the update to

Naik's salary at t4. The sal_update

transaction has not ended.

t7 UPDATE employees
SET salary = 11000
WHERE last_name =

'Mehta';

This statement updates the salary for

Mehta to 11000 in

transactionsal_update.

t8 ROLLBACK; This statement rolls back all changes in

transaction sal_update, ending the

transaction.

141

Time Session Explanation

t9 SET TRANSACTION NAME
'sal_update2';

This statement begins a new

transaction in the session and names

itsal_update2.

t10 UPDATE employees
SET salary = 7050
WHERE last_name = 'Lal';

This statement updates the salary for

Lal to 7050.

t11 UPDATE employees
SET salary = 10950
WHERE last_name =

'Yadav';

This statement updates the salary for

Yadav to 10950.

t12 COMMIT; This statement commits all changes

made in transaction sal_update2,

ending the transaction. The commit

guarantees that the changes are saved

in the online redo log files.

Consider the following program that shows the use of COMMIT,

SAVEPOINT and ROLLBACK statements.

DROP TABLE emp_name;
CREATE TABLE emp_name AS

SELECT employee_id, last_name, salary
FROM employees;

CREATE UNIQUE INDEX empname_ix
ON emp_name (employee_id);

DECLARE
emp_id employees.employee_id%TYPE;
emp_lastname employees.last_name%TYPE;
emp_salary employees.salary%TYPE;

BEGIN
SELECT employee_id, last_name, salary
INTO emp_id, emp_lastname, emp_salary
FROM employees
WHERE employee_id = 120;

SAVEPOINT my_savepoint1;

UPDATE emp_name
SET salary = salary * 1.1

142

WHERE employee_id = emp_id;

DELETE FROM emp_name
WHERE employee_id = 130;

SAVEPOINT my_savepoint2;

INSERT INTO emp_name (employee_id, last_name, salary)
VALUES (emp_id, emp_lastname, emp_salary);

COMMIT;

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK TO my_savepoint2;
DBMS_OUTPUT.PUT_LINE('Transaction rolled back.');

END;
/

8.5.1 Implicit Rollbacks

Before running an INSERT, UPDATE, or DELETE statement, the

database marks an implicit savepoint (unavailable to you). If the

statement fails, the database rolls back to the savepoint. Usually, just the

failed SQL statement is rolled back, not the whole transaction. If the

statement raises an unhandled exception, the host environment

determines what is rolled back.

The database can also roll back single SQL statements to break

deadlocks. The database signals an error to a participating transaction

and rolls back the current statement in that transaction.

Before running a SQL statement, the database must parse it, that

is, examine it to ensure it follows syntax rules and refers to valid schema

objects. Errors detected while running a SQL statement cause a roll back,

but errors detected while parsing the statement do not.

8.5.2 Ending Transactions

You should explicitly commit or roll back every transaction. If you

do not commit or roll back a transaction explicitly, then Oracle determines

its final state. For example,

 A user issues a COMMIT or ROLLBACK statement without a
SAVEPOINT clause.

In a commit, a user explicitly or implicitly requested that the

changes in the transaction be made permanent. Changes made

by the transaction are permanent and visible to other users only

after a transaction commits.

143

 A user runs a DDL command such as CREATE, DROP,

RENAME, or ALTER.

The database issues an implicit COMMIT statement before and

after every DDL statement. If the current transaction contains DML

statements, then Oracle Database first commits the transaction

and then runs and commits the DDL statement as a new, single-

statement transaction.

 A user exits normally from most Oracle Database utilities and

tools, causing the current transaction to be implicitly committed.

 A client process terminates abnormally or executes a ROLLBACK

statement, causing the transaction to be implicitly or explicitly

rolled back.

8.6 SUMMARY

 The SELECT statement in SQL is used to extract data from the one or
more tables or views in the database.

 The SELECT INTO statement retrieves values from one or more
database tables (as the SQL SELECT statement does) and stores
them in variables (which the SQL SELECT statement does not do).

 PL/SQL blocks can be used to manipulate data in the server using
INSERT, DELETE and UPDATE statements.

 Oracle performs a set of tasks for executing any SQL statement.

◦ Reserves an area in memory called private SQL area.

◦ Populates this area with appropriate data.

◦ Frees the memory area when execution completes.

 Cursor is a pointer to the private SQL area that stores information
about processing a specific SELECT or DML statement.

 For SQL statements, there are two types of cursors:

◦ Implicit cursor

◦ Explicit cursor

 An implicit cursor is a session cursor that is constructed and managed
by PL/SQL.

 You cannot control an implicit cursor, but you can get information from
its attributes.

 Cursor attributes return information about the state of the cursor.

 A transaction is a logical, atomic unit of work that contains one or
more SQL statements.

 Transaction processing is a feature that lets multiple users work on

144

the database concurrently, and ensures that each user sees a
consistent version of data and that all changes are applied in the right
order.

 Transaction control is the management of changes made by DML
statements and the grouping of DML statements into transactions.

 Transaction control involves using the following statements:

◦ The COMMIT statement ends the current transaction and makes
all changes performed in the transaction permanent.

◦ The ROLLBACK statement reverses the work done in the current
transaction.

◦ The SAVEPOINT statement identifies a point in a transaction to
which you can later roll back.

 Before running an INSERT, UPDATE, or DELETE statement, the
database marks an implicit savepoint (unavailable to you). If the
statement fails, the database rolls back to the savepoint.

 You should explicitly commit or roll back every transaction. If you do
not commit or roll back a transaction explicitly, then Oracle determines
its final state.

8.7 REVIEW QUESTIONS

 Explain the concept of implicit cursor in PL/SQL.

 What is a transaction? Explain COMMIT, ROLLBACK and
SAVEPOINT in transaction.

 What is a cursor? Discuss the different attributes of a cursor?

8.8 LAB ASSIGNMENT

Consider the following table schema and write a PL/SQL block performing

the following:

EMPID ENAME DEPT DESG SALARY

VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 NUMBER

 Print the EMPID, ENAME, DEPT, DESG and SALARY of the
employee whose name is “Prakash”. If the record is not found then
print “There is no employee with name Prakash”.

 Print the details of the employee getting lowest salary.

 Print the details of the employee getting highest salary.

 Print the average salary of the employees belonging to “Finance”
department.

145

 Delete all the records of employees from the department “HR” getting
salary less than 10,000/- and also print the total number of records
deleted.

 Modify the salary of the employees in the “Admin” department to give
them a hike of 25%.

8.9 BIBLIOGRAPHY, REFERENCES AND FURTHER

READING

 Database Management Systems, Third Edition by RamaKrishnan,
Gehre. McGraw Hill

 Database System Concepts, Fifth Edition by Silberschatz, Korth,
Sudarshan. McGraw Hill

 Murach's Oracle SQL and PL/SQL by Joel Murach. Shroff
Publishers & Distributors

 Oracle Database 11g by Satish Asnani. PHI Learning Private
Limited

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin, Tata
McGraw-Hill

 SQL, PL/SQL The programming language of Oracle, Bayross Ivan,
BPB Publications

 Fundamentals of Database Systems, Elmasri Ramez and Navathe
B. Shamkant, Pearson

8.10 ONLINE REFERENCES

O'Reilly "Mastering Oracle SQL"

http://oreilly.com/catalog/mastorasql/

Oracle Database PL/SQL language Reference 11g Release 2 (11.2), part

number E25519-05

http://docs.oracle.com/cd/E11882_01/appdev.920/a96590/adg09dyn.htm

Chapter 5 Introducing PL/SQL

http://www.cs.kent.edu/~wfan/link/dbapre/dbatest/54905f.htm

Oracle SQL & PL/SQL

http://sql-plsql.blogspot.in/2007/05/oracle-plsql-cursors-with-

parameters.html

146

http://sql-plsql.blogspot.in/2007/03/plsql-introduction.html

PL/SQL tutorial

http://plsql-tutorial.com/index.htm

http://www.academictutorials.com/pl-sql/introduction.asp

Wikipedia links

http://en.wikipedia.org/wiki/PL/SQL

147

UNIT - IV

9

CONTROL STRUCTURES

Unit Structure

9.1Objectives

9.2Control Structure

9.2.1 IF and CASE Statements

A) If Statement

B) IF-THEN Statement

C) IF-THEN-ELSE Statement

D) NESTED IF-THEN- ELSE statements:

9.3 CASE Statement

A) Simple CASE Syntax

B) Searched CASE Syntax

9.4 Loop Statement

9.5 Exit Statement

9.6 Labeling a PL/SQL Loop

9.7 WHILE Statement

9.8 FOR Statement

9.9 Continue Statement

A) CONTINUE Statement:

B) CONTINUE-WHEN Statement:

9.10 Questions

9.11 Further Reading

9.1 OBJECTIVE

After completing this chapter, you will be able to:

 Understand how to use the conditional and looping
structures using PLSQL.

 Understand how to utilize the control structures in queries.

148

 Aware of the syntax and examples for manipulating the
database using queries with the help of various control and
looping structures.

 Understand the Continue statement for updating the
processes after a successful call.

9.2 CONTROL STRUCTURE

The Control Structures are used to decide the execution flow

of the program depending on the programmer defined conditions.

The control structures are the necessary commands over the

execution of the PL/SQL program. Any computer program can be

written using the basic control structures shown in Figure. They can

be combined in any way necessary to deal with a given problem.

In selection structure it tests a condition, then executes one

sequence of statements instead of another, depending on whether

the condition is true or false. A condition can be any variable or

expression that returns a BOOLEAN value (TRUE or FALSE). Also

after the particular condition we can execute a complete block of

statements. The selection statements include IF and CASE

Statements.

The iteration structure executes a sequence of statements

repeatedly as long as a condition holds true. Also here they give us

the facility to increment or decrement of counters to achieve the

proper results.

The sequence structure simply executes a sequence of

statements in the order in which they occur. They are the simplest

form of control structures which executes on by one.

149

9.2.1 IF and CASE Statements

A) IF Statements:

The ‘IF’ statements executes a sequence of statements,
depending on the value of a condition. When the condition is
satisfied, the necessary option will be executed. There are three
forms of IF statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF.
We can form the Condition using relational operators given in
following table. These operators help us to define different kind of
conditions or combination of conditions using following operator
Symbols.

The IF & CASE statements are used in various kinds of
operations on the database. These can be used to sort the data as
well as to find out the exact entry from the table cell depending on
its value. These two operations can used together if the need arise
in operation.

Operator Meaning

> Greater than Operator

>= Greater than or equal to Operator

< Less than Operator

<= Less than or equal to Operator

= Equal to Operator

<>, !=, ~=, ^= Not equal to Operator

LIKE This Operator return true if the character pattern
matches the given value.

BETWEEN..AND These Operator returns true if the value is in the
given range.

IN This Operator returns true if the value is in the
list.

IS NULL This Operator return true if the value is NULL.

B) IF-THEN Statement:

This statement uses the simple condition to evaluate, then it
executes the statement or a block of statements if the condition
returns true. The simplest form of IF statement associates a
condition with a sequence of statements enclosed by the keywords
THEN and END IF (not ENDIF).

150

The general format of an IF statement is:

IF condition THEN
ex_statements

END IF;

Example:
SQL> DECLARE

2 a NUMBER(6);
3 b NUMBER(6);
4 BEGIN
5 a := 24;
6 b := 34;
7 IF a < b THEN
8 DBMS_OUTPUT.PUT_LINE(a || 'is less than' || b);
9 END IF;

10 END;
11 /

24 is less than 34
PL/SQL procedure successfully completed.

Example:
SQL> DECLARE

2 a VARCHAR(12);
3 b VARCHAR(12);
4 BEGIN
5 a := 'YASHASHREE';
6 b := 'YASHASHREE';
7 IF a LIKE b THEN
8 DBMS_OUTPUT.PUT_LINE(a || 'is Same as ' || b);
9 END IF;

10 END;
11 /

YASHASHREE is Same as YASHASHREE

PL/SQL procedure successfully completed.a

C) IF-THEN-ELSE Statement:

In second type of IF statement it adds the keyword ELSE
followed by an alternative sequence of statements. In this if the
condition returns true then first block of statement executes and if
the condition returns false then second block of statement
executes.

151

The general format of an IF-THEN-ELSE statement is:

IF condition THEN
true_ ex_statement;
ELSE
false_ ex_statement;

END IF;

Example:

SQL> DECLARE
2 marks NUMERIC;
3 BEGIN
4 marks := '45';
5 IF marks>35 THEN
6 DBMS_OUTPUT.PUT_LINE('PASS');
7 ELSE
8 DBMS_OUTPUT.PUT_LINE('FAIL');
9 END IF;

10 END;
11 /

PASS
PL/SQL procedure successfully completed.

Example:
SQL> DECLARE

2 a VARCHAR(12);
3 b VARCHAR(12);
4 BEGIN
5 a := 'YASHASHREE';
6 b := 'yashashree';
7 IF a LIKE b THEN
8 DBMS_OUTPUT.PUT_LINE(a || 'is Same as ' || b);
9 ELSE

10 DBMS_OUTPUT.PUT_LINE(a || 'is not Same as ' || b);
11 END IF;
12
13 END;
14 /

YASHASHREE is not Same as yashashree

PL/SQL procedure successfully completed.

D) NESTED IF-THEN- ELSE statements:

We can also put IF statements inside other IF statements.
This statement gives us ability to check more than one condition in

152

a series and execute the appropriate block of statements
depending on the conditions.
The general format of an IF-THEN-ELSE statement is:

IF <condition1>
THEN

...
ELSIF <condition2>
THEN

...
ELSIF <condition2>
THEN

...
END IF;

Example :
SQL> DECLARE

2 marks NUMERIC;
3 BEGIN
4 marks := '67';
5 IF marks >= 75 THEN
6 DBMS_OUTPUT.PUT_LINE('YOU GOT DISINCTION');
7 ELSIF marks >= 60 AND marks<75 THEN
8 DBMS_OUTPUT.PUT_LINE('YOU GOT FIRST CLASS');
9 ELSIF marks >= 50 AND marks<60 THEN

10 DBMS_OUTPUT.PUT_LINE('YOU GOT SECOND CLASS ');
11 ELSIF marks >= '40' AND marks<50 THEN
12 DBMS_OUTPUT.PUT_LINE('YOU GOT PASS CLASS ');
13 ELSE
14 DBMS_OUTPUT.PUT_LINE('Sorry. You are fail..... ');
15
16 END IF;
17 END;
18 /

YOU GOT FIRST CLASS
PL/SQL procedure successfully completed.

Example :

SQL> DECLARE
2 D VARCHAR(10):= TO_CHAR(SYSDATE,'DY');
3 BEGIN
4 IF D= 'SAT' THEN
5 DBMS_OUTPUT.PUT_LINE('ENJOY YOUR WEEKEND');
6 ELSIF D= 'SUN' THEN
7 DBMS_OUTPUT.PUT_LINE('ENJOY YOUR WEEKEND');
8 ELSE
9 DBMS_OUTPUT.PUT_LINE('HAVE A NICE DAY ');

153

10 END IF;
11 END;
12 /

HAVE A NICE DAY
PL/SQL procedure successfully completed.

9.3: CASE STATEMENT :

The CASE statement is a compact way to evaluate a single
condition and choose between many alternative actions. This
statement is very useful when we have multiple conditions as well
as the expected input is also multiple and changeable according to
the situation. It makes sense to use CASE when there are three or
more alternatives to choose from. The CASE Statements in PL/SQL
has two forms

i) Simple CASE :
In Simple CASE we have to specify a SELECTOR, which

determines which group of actions to get executed. It simply
executes if the match is found otherwise it executes the default
statement block.

ii) Searched CASE :
In Searched Case, the SELECTOR is not present, it has

search conditions that are evaluated in order to determine which
group of actions to take place.

A) Simple CASE Syntax:
CASE SELECTOR

WHEN Expr1 THEN ex_statements 1;
WHEN Expr2 THEN ex_statements2;

:
ELSE ex_statements n;

END CASE;

Example
To compare the IF and CASE statements, consider the code

in example that outputs descriptions of school grades. Note the five
Boolean expressions. In each instance, we test whether the same
variable, grade, is equal to one of five values: 'A', 'B', 'C', 'D', or 'F'.
You can rewrite the code in above example using the CASE
statement, as shown in following Example.

Example Using the CASE-WHEN Statement

SQL> DECLARE
2 grade CHAR(1);
3 BEGIN

154

4 grade := 'D';
5 CASE grade
6 WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');
7 WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');
8 WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');
9 WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');

10 WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');
11 ELSE DBMS_OUTPUT.PUT_LINE('No such grade');
12 END CASE;
13 END;
14 /

Fair
PL/SQL procedure successfully completed.

Example:
SQL> DECLARE

2 Product VARCHAR(20);
3 BEGIN
4 Product := 'PEN';
5 CASE Product
6 WHEN 'PEN' THEN DBMS_OUTPUT.PUT_LINE('PRICE IS

20 RS.');
7 WHEN 'PENCIL' THEN DBMS_OUTPUT.PUT_LINE('PRICE

IS 10 RS.');
8 WHEN 'ERASER' THEN DBMS_OUTPUT.PUT_LINE('PRICE

IS 5 RS.');
9 WHEN 'SHARPNER' THEN DBMS_ OUTPUT.

PUT_LINE('PRICE IS 10 RS.');
10 WHEN 'NOTEBOOK' THEN DBMS_OUTPUT.PUT_LINE('PRICE

IS 25 RS.');
11 ELSE DBMS_OUTPUT.PUT_LINE('No such grade');
12 END CASE;
13 END;
14 /

PRICE IS 20 RS.
PL/SQL procedure successfully completed.

B) Searched CASE Syntax:
CASE
WHEN SearchCondition THEN

ex_statements 1;
WHEN SearchCondition THEN

ex_statements 2;
:

END StatementN;
END CASE;

155

Example :
SQL> DECLARE

2 grade CHAR(1):='C';
3 apprisal VARCHAR(20);
4 id number:=124;
5 attnd NUMBER:=150;
6 min_days CONSTANT NUMBER:=200;
7 BEGIN
8 apprisal:=
9 CASE

10 WHEN grade = 'F' OR attnd<min_days
11 THEN 'Poor'
12 WHEN grade = 'A' THEN 'Excellent'
13 WHEN grade = 'B' THEN 'Very Good'
14 WHEN grade = 'C' THEN 'Good'
15 WHEN grade = 'D' THEN 'Fair'
16 WHEN grade = 'F' THEN 'Poor'
17 ELSE 'No such grade'
18 END;
19 DBMS_OUTPUT.PUT_LINE ('Result for student '||id||' is

'||apprisal);
20 END;
21 /

Result for student 124 is Poor
PL/SQL procedure successfully completed.

9.4 LOOP STATEMENT :

This is used to repeatedly execute a set of statements. This is the
simplest form of looping structures. The loop statements also
execute continuously until the exit condition is not reached.

LOOP
Statements;
END LOOP;

Loop… End Loop has no termination point. So unless we terminate
loop using EXIT command (discussed next) it becomes an infinite loop.

9.5 EXIT STATEMENT :

This is used to exit out of a Loop. This is mainly used with LOOP
statement, as there is no other way of terminating the LOOP.
The following is the syntax of EXIT command.

EXIT [WHEN condition];

If EXIT is used alone, it will terminate the current loop as and when
it is executed.

156

If EXIT is used with WHEN clause, then the current loop is
terminated only when the condition given after WHEN is satisfied.

We can put EXIT statements anywhere inside a loop, but not outside
a loop. To complete a PL/SQL block before it reaches its normal
end, use the RETURN statement.

Example:
SQL> DECLARE

2 c NUMBER(6);
3 BEGIN
4 c := 1;
5 LOOP
6 DBMS_OUTPUT.PUT_LINE('aI:' || c);
7 c := c + 1;
8 IF c > 5 THEN
9 EXIT;

10 END IF;
11 DBMS_OUTPUT.PUT_LINE('bI:' || c);
12 END LOOP;
13 END;
14 /

aI:1
bI:2
aI:2
bI:3
aI:3
bI:4
aI:4
bI:5
aI:5

PL/SQL procedure successfully completed.

Example :
SQL> DECLARE

2 num NUMBER(6);
3 BEGIN
4 num := 4;
5 LOOP
6 DBMS_OUTPUT.PUT_LINE('Table of 4:' || num);
7 num := num + 4;
8 IF num > 40 THEN
9 EXIT;

10 END IF;
11 END LOOP;
12 END;
13 /
Table of 4:4

157

Table of 4:8
Table of 4:12
Table of 4:16
Table of 4:20
Table of 4:24
Table of 4:28
Table of 4:32
Table of 4:36
Table of 4:40

PL/SQL procedure successfully completed.

9.6 LABELING A PL/SQL LOOP

We are also able to give or apply the labels to PLSQL loops.
The optional label, an undeclared identifier enclosed by double
angle brackets, must appear at the beginning of the LOOP
statement. The label name can also appear at the end of the LOOP
statement. When we nest the labeled loops, ending label names
are used to improve readability.

Simply label the enclosing loop to complete. Use the label in
an EXIT statement, as shown in following Example. Every
enclosing loop up to and including the labeled loop is exited.

Example Using EXIT with Labeled Loops

SQL> DECLARE

2 a PLS_INTEGER := 0;

3 b PLS_INTEGER := 0;

4 c PLS_INTEGER;

5 BEGIN

6 <<outer >>

7 LOOP

8 b := b + 1;

9 c := 0;

10 <<inner >>

11 LOOP

12 c := c + 1;

13 a := a +b * c;

14 EXIT inner WHEN (c > 5);

15 EXIT outer WHEN ((b *c) > 15);

16 END LOOP inner;

17 END LOOP outer;

158

18 DBMS_OUTPUT.PUT_LINE('The sum of products is
equals to: ' || TO_CHAR(a));

19 END;

20 /

sum of products is equals to: 166

PL/SQL procedure successfully completed.

9.7: WHILE STATEMENT

The while statement execute series of statements as long as the
given condition is true. When the given condition is reached the
loop terminates automatically

WHILE condition LOOP
Statements;
END LOOP;

As long as the condition is true then statements will be repeatedly
executed. Once the condition is false then loop is terminated.

Example
SQL> DECLARE

2 a NUMBER(7);
3 BEGIN
4 a := 1;
5 WHILE a <= 5
6 LOOP
7 DBMS_OUTPUT.PUT_LINE('Initial:' || a);
8 a := a + 1;
9 DBMS_OUTPUT.PUT_LINE('After:' || a);

10 END LOOP;
11 END;
12 /
Initial:1
After:2
Initial:2
After:3
Initial:3
After:4
Initial:4
After:5
Initial:5
After:6
PL/SQL procedure successfully completed.

Example :
SQL> DECLARE

2 num NUMBER(4);
3 BEGIN
4 num := 10;
5 WHILE num <= 100

159

6 LOOP
7 DBMS_OUTPUT.PUT_LINE('Table of 10 :' || num);
8 num := num + 10;
9 END LOOP;

10 END;
11 /
Table of 10 :10
Table of 10 :20
Table of 10 :30
Table of 10 :40
Table of 10 :50
Table of 10 :60
Table of 10 :70
Table of 10 :80
Table of 10 :90
Table of 10 :100

PL/SQL procedure successfully completed.

9.8: FOR STATEMENT

The FOR loops iterate over a specified range of integers.
The number of iterations is known before the loop is entered. A
double dot (..) serves as the range operator. The range is evaluated
when the FOR loop is first entered and is never re-evaluated. If the
lowerrange equals the upperrange, the loop body is executed once.
Following is the syntax for the FOR loop.

FOR counter IN [REVERSE] lowerrange ..
upperrange LOOP
Statements;
END LOOP;

Steps
The following is the sequence in which FOR will take the steps.
1. Counter is set to lowerrange.
2. If counter is less than or equal to upperrange then statements

are executed otherwise loop is terminated.
3. Counter is incremented by one and only one. It is not possible to

increment counter by more than one.
4. Repeats step2.

Example:
SQL> DECLARE

2 num1 NUMBER(4);
3 BEGIN
4 num1 :=19;
5 FOR num IN 1..10 LOOP
6 DBMS_OUTPUT.PUT_LINE('Table of 19 :' || num1);
7 num1:= num1 + 19;

160

8 END LOOP;
9 END;

10 /
Table of 19 :19
Table of 19 :38
Table of 19 :57
Table of 19 :76
Table of 19 :95
Table of 19 :114
Table of 19 :133
Table of 19 :152
Table of 19 :171
Table of 19 :190

PL/SQL procedure successfully completed.

Example :
SQL> CREATE TABLE temp(num NUMERIC, str
VARCHAR(20));
Table created.

SQL> BEGIN
2 FOR i IN 1..10 LOOP
3 IF MOD(i,2) = 0 THEN
4 INSERT INTO temp VALUES(i,'number is even');
5 ELSE
6 INSERT INTO temp VALUES(i,'number is odd');
7 END IF;
8 END LOOP;
9 END;

10 /

PL/SQL procedure successfully completed.
SQL> SELECT * FROM temp;

NUM STR
-------- --------------------

1 number is odd
2 number is even
3 number is odd
4 number is even
5 number is odd
6 number is even
7 number is odd
8 number is even
9 number is odd
10 number is even

10 rows selected.

161

If REVERSE option is used the following steps will take place:

1. Counter is set to upper range.

2. If counter is greater than or equal to lower range then statements
are executed otherwise loop is terminated.

3. Counter is decremented by one.

4. Go to step 2.

Example

SQL> DECLARE

2 n NUMBER := 10;

3 BEGIN

4 DBMS_OUTPUT.PUT_LINE('RESULT');

5 FOR i IN REVERSE 1..n LOOP

6 DBMS_OUTPUT.PUT_LINE(i);

7 END LOOP;

8 END;

9 /

RESULT

10

9

8

7

6

5

4

3

2

1

PL/SQL procedure successfully completed.

9.9: CONTINUE STATEMENT

To exit the current iteration of a loop, PL/SQL provides the following
statements:

 CONTINUE
 Continue-When(Condition)

A) CONTINUE Statement:
You can put CONTINUE statements anywhere inside a loop, but
not outside a loop. To complete a PL/SQL block before it reaches its
normal end, use the RETURN statement .

162

 Continue statement support in only Oracle 11g.

A CONTINUE statement cannot cross a subprogram or method
boundary.
When a CONTINUE statement is encountered, the current iteration
of the loop completes immediately and control passes to the next
iteration of the loop.

Example :

SQL>BEGIN

2 FOR a IN 1 .. 10 LOOP

3 IF MOD(a,2) = 0 THEN

4 CONTINUE;

5 DBMS_OUTPUT.PUT_LINE(' Even Number := ' || a);

6 END IF;

7 DBMS_OUTPUT.PUT_LINE(' Odd Number := ' || a);

8 END LOOP;

9 END;

Odd Number := 1

Even Number := 2

Odd Number := 3

Even Number := 4

Odd Number := 5

Even Number := 6

Odd Number := 7

Even Number := 8

Odd Number := 9

Even Number := 10

PL/SQL procedure successfully completed.

B) CONTINUE-WHEN statement
Syntax
Continue-When(Condition)
Once the condition in the When clause is evaluated and if found
true, the current iteration of the loop completes and control passes
to the next iteration.

Example :
SQL> BEGIN

2 FOR a IN 1 .. 10 LOOP
3 CONTINUE WHEN MOD(a,2) = 0;
4 DBMS_OUTPUT.PUT_LINE('Odd Num := ' ||a);

163

5 END LOOP;
6 END;
7 /

Odd Num := 1
Odd Num := 3
Odd Num := 5
Odd Num := 7
Odd Num := 9
PL/SQL procedure successfully completed.

9.10 QUESTIONS

1. Explain the PLSQL control Structure with its types and Syntax.

2. What are the different Operators used in IF statement?

3. Explain IF-THEN-ELSE Statement with help of Example.

4. Write a short example to demonstrate use of Case Statement in
PLSQL.

5. Explain Searched CASE statement in PLSQL with Help of
Example.

6. Write Short note on EXIT and Continue Statement in PLSQL.

7. How to Label PLSQL loop?

8. Write a short example to demonstrate use of WHILE loop in
PLSQL.

9. Write a short example to demonstrate use of FOR loop in
PLSQL.

Practice Questions:

10.Write a PL/SQL block of code for reverse number(e.g. 123=321)

11. If there are no transaction taken place in the last 365 days then
mark the account status as inactive and then record the account
number, opening date and the type of account in new table.

12.Write a PL/SQL block of code for area of a Triangle two times
with different values. Store the values in a table.

13.Write a PL/SQL block of code for area of a Circle three times
with different values. Store the values in a table.

14.Write a PL/SQL block of code that will accept an ID number of a
student check if student’s presence is less than 75% then
declared not eligible for exam. (Create Student table with proper
fields.)

164

9.11 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani
(PHI) EEE edition

165

10

COMPOSITE DATA TYPE & CURSORS

Unit Structure

10.1 Objectives

10.2 Introduction to Composite Data types

10.3 Collection

10.4 Index by Tables

10.5 Collection Methods

10.6 How to use INDEX BY Table of Records?

10.7 Introduction to PLSQL Record

A) %TYPE and %ROWTYPE

B) Use of %TYPE

10.8 Writing Insert and Update with PL/SQL Records

10.9 Cursor

10.10 Classification of CURSORS

10.11 Using Cursor in FOR loop

10.12 The %NOTFOUND and %ROWCOUNT Attributes

10.13 FOR UPDATE Clause and WHERE CURRENT Clause

10.14 Questions

10.15 Further Reading

10.1 OBJECTIVES

After completing this chapter, we will be able to:

 Learn and understand the Composite Data types.

 Understand the structure and working of Collections.

 Implement Collection Methods

 Understand the PLSQL Records

 Understand the Cursor implementation

 Implement the Cursor in FOR loop

166

10.2 INTRODUCTION TO COMPOSITE DATA TYPES:

Composite datatypes can be compileled as the joint venture

of the existing data type. Composite datatypes are the datatypes

that are build with the combination of the other available datatypes

of PL/SQL. We can use this as the collection of the datatypes used

to represent the one unique structure that can be used in the

PL/SQL block.

10.3 COLLECTION:

A collection is referred as a sequence of multiple elements. It
is an ordered group of elements, all of the same type. It is a general
concept that includes lists, arrays, and other datatypes used in
classic programming algorithms. Each element is addressed by a
unique subscript.

PL/SQL offers following collection types:

 Associative arrays: These are also known as index-by tables;
that let us look up elements using arbitrary numbers and strings
for subscript values. (They are similar to hash tables in other
programming languages.)

 Nested tables: These hold a random number of elements. They
use sequential numbers as subscripts. We can define equivalent
SQL types, allowing nested tables to be stored in database
tables and manipulated through SQL.

 Varrays (Variable-size arrays): These hold a fixed number of
elements (although we can change the number of elements at
runtime). They use sequential numbers as subscripts. We can
define equivalent SQL types, allowing Varrays to be stored in
database tables. They can be stored and retrieved through SQL,
but with less flexibility than nested tables.

10.4: INDEX-BY TABLES

The first type of collection is known as index-by tables.
These behave in the same way as arrays except that have no
upper bounds, allowing them to constantly extend. As the name
implies, the collection is indexed using BINARY_INTEGER values,
which do not need to be consecutive. The collection is extended by
assigning values to an element using an index value that does not
currently exist.

167

SQL> DECLARE
2 TYPE table_type IS TABLE OF NUMBER(10)
3 INDEX BY BINARY_INTEGER;
4
5 v_tab table_type;
6 v_idx NUMBER;
7 BEGIN
8 -- Initialise the collection.
9 << load_loop >>

10 FOR i IN 1 .. 5 LOOP
11 v_tab(i) := i;
12 END LOOP load_loop;
13
14 -- Delete the third item of the collection.
15 v_tab.DELETE(3);
16
17 -- Traverse sparse collection
18 v_idx := v_tab.FIRST;
19 << display_loop >>
20 WHILE v_idx IS NOT NULL LOOP
21 DBMS_OUTPUT.PUT_LINE('The number ' || v_tab(v_idx));
22 v_idx := v_tab.NEXT(v_idx);
23 END LOOP display_loop;
24 END;
25 /

The number 1
The number 2
The number 4
The number 5

PL/SQL procedure successfully completed.

10.5: COLLECTION METHODS

The collection in PLSQL comes with huge support by various
methods. A variety of methods exist for collections, but not all are
relevant for every collection type. The methods are specific for
specific collections.

A) EXISTS:- If nth element is present in a collection, it returns
true.

Example:

IF sub.EXISTS(a) THEN sub(a) := new_sub;

END IF;

168

B) COUNT:- This method help to count the number of elements
in a collection.

Example:
IF subs.COUNT = 24 THEN ...

C) LIMIT:- This method is used in varrays, LIMIT returns the
bound value or maximum number of elements the varray can
contain.

Example:
IF subs.LIMIT = 24 THEN ...

D) FIRST:- This method returns the first member of the
collection.

Example:
IF sub.FIRST = sub.LAST THEN ...

E) LAST:- This method returns the last member of the
collection.

Example:
IF sub.FIRST = sub.LAST THEN ...

F) PRIOR:- This method returns the preceding index number of
nth element.

Example:
n := subs.PRIOR(subs.FIRST);

G) PRIOR:- This method returns the next or succeeding index
number of nth element.

Example:
a := subs.NEXT(a);

H) EXTEND:- This method is used to increase the size of
nested table or varray. It either appends one null element to
a collection, n null elements or n copies of ith element of a
collection.

Example :
subs.EXTEND(5,1); // It appends 5 copies of element 1.

I) TRIM:- this method is used to decrease the size of collection
by removing one element from end of collection or n
elements.

Example:
subs.TRIM(3);

J) DELETE:- This method deletes the collection elements. It
either deletes all elements, nth element from an array, all
elements in the range m, n.

Example:
subs.DELETE(2);

169

Example on collection methods:

1 DECLARE
2 TYPE my_office IS TABLE OF VARCHAR2 (100);
3
4 office_staff names_t := names_t ();
5 clerk names_t := names_t ();
6 manager names_t := names_t ();
7 BEGIN
8 office_staff.EXTEND (4);
9 office_staff (1) := ‘Takshak’;

10 office_staff (2) := ‘Viraj’;
11 office_staff (3) := ‘Sonal’;
12 office_staff (4) := ‘pooja’;
13
14 clerk.EXTEND;
15 clerk(clerk.LAST) := ‘Sonal’;
16 clerk.EXTEND;
17 clerk(clerk.LAST) := ‘Viraj’;
18
19 manager: = office_staff MULTISET EXCEPT clerk;
20
21 FOR l_row IN 1 .. manager.COUNT
22 LOOP
23 DBMS_OUTPUT.put_line (manager (l_row));
24 END LOOP;
25 END;

10.6 HOW TO USE INDEX BY TABLE OF RECORDS?

Example : Declare an index-by table variable to hold the employee

records in cursor

SQL> CREATE TABLE EMP (EMPNO NUMBER(4) NOT NULL,

2 ENAME VARCHAR2(10),

3 JOB VARCHAR2(9),

4 MGR NUMBER(4),

5 HIREDATE DATE,

6 SAL NUMBER(7, 2),

7 COMM NUMBER(7, 2),

8 DEPTNO NUMBER(2));

Table created.

SQL> INSERT INTO EMP VALUES (736, 'Sonali', 'CLERK', 790,

TO_DATE('17-DEC-2000', 'DD-MON-YYYY'), 800, NULL, 20);

1 row created.

170

SQL> INSERT INTO EMP VALUES (749, 'Tushar', 'SALESMAN', 769,

TO_DATE('20-FEB-2001', 'DD-MON-YYYY'), 1600, 300, 30);

1 row created.

SQL> INSERT INTO EMP VALUES (752, 'Priya', 'SALESMAN', 769,

TO_DATE('22-FEB-2000', 'DD-MON-YYYY'), 1250, 500, 30);

1 row created.

SQL> INSERT INTO EMP VALUES (756, 'Tanu', 'MANAGER', 783,

TO_DATE('2-APR-2001', 'DD-MON-YYYY'), 2975, NULL, 20);

1 row created.

SQL> INSERT INTO EMP VALUES (765, 'Sara', 'SALESMAN',

769,TO_DATE('28-SEP-2001', 'DD-MON-YYYY'), 1250, 1400, 30);

1 row created.

SQL> INSERT INTO EMP VALUES (769, 'Sana', 'MANAGER',

783,TO_DATE('1-MAY-2001', 'DD-MON-YYYY'), 2850, NULL, 30);

1 row created.

SQL> INSERT INTO EMP VALUES (778, 'Tejas', 'MANAGER',

783,TO_DATE('9-JUN-2001','DD-MON-YYYY'), 2450, NULL, 10);

1 row created.

SQL> INSERT INTO EMP VALUES (778, 'Akhi', 'ANALYST',

756,TO_DATE('09-DEC-2002','DD-MON-YYYY'), 3000, NULL, 20);

1 row created.

SQL> INSERT INTO EMP VALUES (783, 'Amol', 'PRESIDENT',

NULL,TO_DATE('17-NOV-2001', 'DD-MON-YYYY'), 5000, NULL, 10);

1 row created.

SQL> INSERT INTO EMP VALUES (784, 'Sandip', 'SALESMAN',

769,TO_DATE('8-SEP-2001', 'DD-MON-YYYY'), 1500, 0, 30);

1 row created.

SQL> DECLARE
2 CURSOR all_emps IS
3 SELECT *
4 FROM emp
5 ORDER BY ename;
6
7 TYPE emp_table IS TABLE OF emp%ROWTYPE
8 INDEX BY BINARY_INTEGER;
9 emps emp_table;

10 emps_max BINARY_INTEGER;
11 BEGIN
12 emps_max := 0;

171

13 FOR emp IN all_emps LOOP
14 emps_max := emps_max + 1;
15 emps(emps_max).empno := emp.empno;
16 emps(emps_max).ename := emp.ename;
17 emps(emps_max).JOB := emp.JOB;
18 emps(emps_max).HIREDATE := emp.HIREDATE;
19 emps(emps_max).DEPTNO := emp.DEPTNO;
20 END LOOP;
21 END;
22 /

PL/SQL procedure successfully completed.

10.7 INTRODUCTION TO PL/SQL RECORD:

The PLSQL record is a group of related data items stored in
fields, each with its own name and datatype. The record is special
type of PLSQL variable that can hold a table row, or some columns
from a table row. The fields of record correspond to table columns.

The %ROWTYPE attribute lets us declare a record that
represents a row in a database table, without listing all the columns.
Our code keeps working even after columns are added to the table.
If we want to represent a subset of columns in a table, or columns
from different tables, we can define a view or declare a cursor to
select the right columns and do any necessary joins, and then
apply %ROWTYPE to the view or cursor.

The important thing while using %TYPE or %ROWTYPE is
the table name and the column name must already exist in
database.

A) %TYPE and %ROWTYPE:

The %TYPE and %ROWTYPE attributes are used to define
variables in PL/SQL , as it is defined within the database. If the
datatype or precision of a column changes, the program
automatically picks up the new definition from the database without
having to make any code changes.

The %TYPE and %ROWTYPE constructs the variable,
provide data independence, reduces maintenance costs, and
allows programs to adapt as the database changes to meet new
business needs.

 %TYPE

The %TYPE attribute is used to declare a field with the same
type as that of a specified table's column. % TYPE provides the
data type of a variable or a database column to that variable. This is
very useful because we do not have to declare the parameter data

172

type and also, when the column data type changes in the table, we
do not come to procedure and change the data type.

Syntax :

record_name record_type_name;

Example :

SQL> DECLARE
2 v_name student.name%TYPE;
3 BEGIN
4 SELECT name INTO v_name FROM student WHERE

ROWNUM = 1;
5 DBMS_OUTPUT.PUT_LINE('Name = ' || v_name);
6 END;
7 /

Name = abc
PL/SQL procedure successfully completed.

 %ROWTYPE

The %ROWTYPE attribute is used to declare a record with
the same types as found in the specified database table, view or
cursor. % ROWTYPE provides the record type that represents a
entire row of a table or view or columns selected in the cursor. We
normally use %ROWTYPE to retrieve the record which contains all
of the columns from a specified database table.

Syntax :

record_name table_name%ROWTYPE;

Example :

SQL> DECLARE
2 v_stud student%ROWTYPE;
3 BEGIN
4 v_stud.rollno := 6;
5 v_stud.name := 'xyz';
6 v_stud.mark1 := 35;
7 v_stud.mark2 := 56;
8 v_stud.mark3 := 67;
9 DBMS_OUTPUT.PUT_LINE('rollno : '||v_stud.rollno);

10 DBMS_OUTPUT.PUT_LINE('name : '||v_stud.name);
11 DBMS_OUTPUT.PUT_LINE('mark1 : '||v_stud.mark1);
12 DBMS_OUTPUT.PUT_LINE('mark2 : '||v_stud.mark2);
13 DBMS_OUTPUT.PUT_LINE('mark3 : '||v_stud.mark3);
14 END;
15 /
rollno : 6
name : xyz
mark1 : 35

173

mark2 : 56
mark3 : 67

PL/SQL procedure successfully completed.

C) Using of %type :
create table student(

2 rollno number(4) primary key, name varchar(4),
3 mark1 number(4),
4 mark2 number(4),
5 mark3 number(4)
6);

SQL> declare
2 v_rollno student.rollno%type := &rollno;
3 v_name student.name%type := '&name';
4 v_mark1 student.mark1%type := &mark1;
5 v_mark2 student.mark2%type := &mark2;
6 v_mark3 student.mark3%type := &mark3;
7 begin
8 insert into student(rollno , name,mark1 , mark2 , mark3)
9 values(v_rollno, v_name, v_mark1 , v_mark2 , v_mark3);

10 dbms_output.put_Line('Inserted Successfully');
11 end;
12 /

Enter value for rollno: 4
old 2: v_rollno student.rollno%type := &rollno;
new 2: v_rollno student.rollno%type := 4;
Enter value for name: Sana
old 3: v_name student.name%type := '&name';
new 3: v_name student.name%type := 'Sana';
Enter value for mark1: 24
old 4: v_mark1 student.mark1%type := &mark1;
new 4: v_mark1 student.mark1%type := 24;
Enter value for mark2: 25
old 5: v_mark2 student.mark2%type := &mark2;
new 5: v_mark2 student.mark2%type := 25;
Enter value for mark3: 45
old 6: v_mark3 student.mark3%type := &mark3;
new 6: v_mark3 student.mark3%type := 45;
Inserted Successfully

10.8 WRITING INSERT AND UPDATE WITH PL/SQL
RECORDS :

PLSQL gives us flexibility to write INSERT, UPDATE, and DELETE

statements directly in PL/SQL programs, without any special
notation:

174

SQL> CREATE TABLE I1(a INTEGER, b INTEGER);
Table created.

SQL> INSERT INTO I1 VALUES(1, 3);
1 row created.

SQL> INSERT INTO I1 VALUES(2, 4);
1 row created.

SQL> DECLARE
2 x I1.a%TYPE:=64;
3 y I1.b%TYPE:=54;
4 BEGIN
5 INSERT INTO I1 VALUES(x,y);
6 END;
7 /

PL/SQL procedure successfully completed.

SQL> SELECT * FROM I1;
A B

---------- ----------
1 3
2 4
64 54

SQL> DECLARE
2 x I1.a%TYPE:=64;
3 y I1.b%TYPE:=54;
4 BEGIN
5 UPDATE I1 SET a = x WHERE b < y;
7 END;
8 /

PL/SQL procedure successfully completed.

SQL> SELECT * FROM I1;
A B

---------- ----------
64 3
64 4
64 54

SQL> DECLARE
2 x I1.a%TYPE:=64;
3 y I1.b%TYPE:=54;
4 BEGIN
5 DELETE FROM I1 WHERE a = x;
6 END;
7 /

175

PL/SQL procedure successfully completed.

SQL> SELECT * FROM I1;
no rows selected

10.9: CURSOR

A cursor in PL/SQL means a specific private SQL area
where information for the specific statement is kept for processing.
PL/SQL uses both implicit and explicit cursors. PL/SQL implicitly
declares a cursor for all SQL data manipulation statements on a set
of rows, including queries that return only one row. For queries that
return more than one row, we can explicitly declare a cursor to
process the rows individually.

In the simplest form, a cursor is defined as the pointer into a
table in the database. This simplifies the task of finding proper
values among the huge set of database tables.

In PL/SQL block , SELECT statement cannot return more
than one row at a time. So Cursor use to some group of rows(more
than one row) for implementing certain logic to all the records of
group are show.

10.10: CLASSIFICATION OF CURSORS

Cursors can be classified as:
 Implicit Cursor or Internal Cursor – These are managed

by Oracle itself or it is the Internal Process of oracle for itself.
 Explicit Cursor or User-defined Cursor – these are used

to manage for User/Prgrammer or External Processing.

A) Implicit Cursor:
Oracle uses implicit cursors for its internal processing. Even if we
execute a SELECT statement Oracle reserves a private SQL area
in memory called cursor.

176

Implicit cursor variables

Cursor
Attribute

Cursor Variable Description

%ISOPEN SQL%ISOPEN

The Oracle engine
automatically opens the
cursor
If cursor open return true
otherwise return false.

%FOUND SQL%FOUND

If selected return one or
more than one row
INSERT, UPDATE,
DELETE opration affect
If affect return true
otherwise return false.

%NOTFOUND SQL%NOTFOUND

If selected return one or
more than one row
INSERT, UPDATE,
DELETE opration not affect
If not affect the row return
true otherwise return
false.

%ROWCOUNT SQL%ROWCOUNT

It return the number of rows
affected by an insert,
update, delete or select
statement.

SQL> DECLARE var_rows number(5);

2 BEGIN

3 UPDATE student

4 SET mark1 = mark1 + 10;

5 IF SQL%NOTFOUND THEN

6 dbms_output.put_line('None of the marks where updated');

7 ELSIF SQL%FOUND THEN

8 var_rows := SQL%ROWCOUNT;

9 dbms_output.put_line('Marks for ' || var_rows || 'students are
updated');

10 END IF;

11 END;

12 /

177

Marks for 6 students are updated
PL/SQL procedure successfully completed.

 Drawbacks of Implicit Cursors

When we use implicit cursor, if our query returns only a single row,
we can still decide to use an explicit cursor. The implicit cursor has
the following drawbacks:

 Implicit cursors are less efficient than an explicit cursor.
 Implicit cursors are more vulnerable to data errors.
 Implicit cursors gives us less programmatic control.

B) Explicit Cursor:
The Cursors which are declared by user are called Explicit Cursor.
The user has to declare the cursor, open cursor to reserve the
memory are and populate data, fetch the records from the active
data set one at a time, apply logic and last close the cursor.

 How to use Explicit Cursor?

There are four steps for using an Explicit Cursor.

 We have to DECLARE the cursor in the declaration section.

 OPEN the cursor in the Execution Section.

 FETCH the data from cursor into PL/SQL variables or
records in the Execution Section.

 CLOSE the cursor in the Execution Section before we end
the PL/SQL Block.

Cursor Declaration :

CURSOR c_student IS SELECT
RollNo,mark1,mark2,mark3 FROM student;

In above syntax we have created a cursor with name c_student
which is associated with student table.
Once we declared the cursor, we can open it as:

OPEN c_student;

Then we can fetch rows from it as:

FETCH c_student INTO
var_rollno,var_mark1,var_mark2,var_mark3 ;

After finishing the use of cursor we can close it as:

CLOSE c_student;

178

Explicit cursor variables

Cursor
Attribute

Cursor
Variable

Description

%ISOPEN c%ISOPEN

Oracle engine automatically open
the cursor
If cursor open return true
otherwise return false.

%FOUND c%FOUND

If selected return one or more
than one row INSERT, UPDATE,
DELETE opration affect
If affect return true otherwise
return false.

%NOTFOUND c%NOTFOUND

If selected return one or more
than one row INSERT, UPDATE,
DELETE opration not affect
If not affect the row return true
otherwise return false.

%ROWCOUNT c%ROWCOUNT
Return the number of rows
affected by an insert, update,
delete or select statement.

SQL> create table student(
2 rollno number(4) primary key, name varchar(4),
3 mark1 number(4),
4 mark2 number(4),
5 mark3 number(4)
6);

Table created.

SQL> insert into student values(1,'Hitesh',56,78,89);
1 row created.

SQL> insert into student values(2,'Suresh',55,44,66);
1 row created.

SQL> insert into student values(3,'Kamal',56,78,89);
1 row created.

SQL> insert into student values(4,'Varun',55,44,66);
1 row created.

SQL> insert into student values(5,'Anu',56,78,89);
1 row created.

SQL> insert into student values(6,'Dinu',55,44,66);

179

1 row created.
SQL> select * from student;
ROLLNO NAME MARK1 MARK2 MARK3

-- -------- ---- ---------- ---------- ----------
1 Hitesh 56 78 89
2 Suresh 55 44 66
3 Kamal 56 78 89
4 Varun 55 44 66
5 Anu 56 78 89
6 Dinu 55 44 66

6 rows selected.

SQL> create table student_performance

2 (

3 Rollno number(4),

4 Total number(4),

5 Average number(4),

6 Grade varchar(15)

7);

Table created.

SQL> Declare

var_total number(4);

var_average number(4);

var_grade varchar(15);

var_rollno number(4);

var_mark1 number(4);

var_mark2 number(4);

var_mark3 number(4);

cursor c_student is

select RollNo,mark1,mark2,mark3 from student;

begin

open c_student;

loop

fetch c_student into var_rollno,var_mark1,var_mark2,var_mark3 ;

exit when c_student%notfound;

var_total:=var_mark1+var_mark2+var_mark3;

var_average:=var_total/3;

if var_average<35 then

var_grade:='fail';

else

180

var_grade:='pass';

end if;

insert into student_performance
values(var_rollno,var_total,var_average,var_grade);

end loop;

close c_student;

end;

/

PL/SQL procedure successfully completed.

SQL> select * from student_performance;

ROLLNO TOTAL AVERAGE GRADE
---------- ---------- ---------- ---------------

1 223 74 pass
2 165 55 pass
3 223 74 pass
4 165 55 pass
5 223 74 pass
6 165 55 pass

6 rows selected.

10.11 USING CURSOR IN FOR LOOP :

When we use FOR LOOP, we need not declare a record or
variables to store the cursor values, need not open, fetch and close
the cursor. These functions are accomplished by the FOR LOOP
automatically.

General Syntax for using FOR LOOP:
FOR record_name IN cusror_name
LOOP

process the row...
END LOOP;

Example

SQL> declare

2 cursor s_stud (rno NUMBER) is

3 select * from student where rollno = rno;

4 begin

5 for r_stud in s_stud(5) loop

6 update student

7 set mark2=mark2+5

8 where rollno = r_stud.rollno;

181

9 DBMS_OUTPUT.put_line('Student RollNo: '||
r_stud.rollno||' Student Name: '||

r_stud.name);

10 end loop;

11 end;

12 /

Student RollNo: 5 Student Name:iop

PL/SQL procedure successfully completed.

10.12 THE %NOTFOUND AND %ROWCOUNT
ATTRIBUTES

 A) %NOTFOUND

The %NOTFOUND attribute works opposite of %FOUND. It

returns TRUE if the cursor is unable to fetch another row because

the last row was fetched. If the cursor is unable to return a row

because of an error, the appropriate exception is raised. If the

cursor has not yet been opened, a reference to the %NOTFOUND

attribute raises the INVALID_CURSOR exception. We can evaluate

the %NOTFOUND attribute of any open cursor, because we

reference the cursor by name.

 B) %ROWCOUNT

The %ROWCOUNT is a cursor attribute. The value of

%ROWCOUNT is set after the FETCH command is executed or an

INSERT, UPDATE or DELETE implicit cursor is used. The

%ROWCOUNT attribute (for EXPLICIT and IMPLICIT cursors) does not

return the total number of rows for a query prior to the first fetch. It does

return:

 The number of rows fetched “so far” following a fetch.
 The number of rows affected by a INSERT, UPDATE, and

DELETE.
The attribute can be used in procedural statements but not in SQL

statements.

Statement %ROWCOUNT value

FETCH Number of rows returned by the fetched
cursor, incremented 1 time for each
successful fetch.

SELECT INTO 1, even if TOO_MANY_ROWS is raised

UPDATE Number of rows effected

DELETE Number of rows effected

INSERT Number of rows effected

182

Example :

SQL> DECLARE

2 TYPE item_record IS RECORD

3 (id NUMBER, title VARCHAR2(60));

4 item ITEM_RECORD;

5 CURSOR c IS

6 SELECT rollno, name

7 FROM student

8 WHERE rollno = 1;

9 BEGIN

10 OPEN c;

11 LOOP

12 FETCH c INTO item;

13 IF c%NOTFOUND THEN

14 IF c%ROWCOUNT = 0 THEN

15 dbms_output.put_line('No Data Found');

16 END IF;

17 EXIT;

18 ELSE

19 dbms_output.put_line('Name of student :'||item.title);

20 END IF;

21 END LOOP;

22 END;

23 /

Name of student :abc

PL/SQL procedure successfully completed.

10.13 FOR UPDATE CLAUSE AND WHERE CURRENT
CLAUSE

A) FOR UPDATE clause
The FOR UPDATE clause is an optional part of a SELECT

statement. Cursors are read-only by default. The FOR UPDATE
clause specifies that the cursor should be updatable, and enforces
a check during compilation that the SELECT statement meets the
requirements for an updatable cursor. For more information about
updatability, see Requirements for updatable cursors and updatable
ResultSets.

183

Syntax

FOR
{

READ ONLY | FETCH ONLY |
UPDATE [OF Simple-column-Name [, Simple-column-

Name]*]
}

Simple-column-Name refers to the names visible for the table
specified in the FROM clause of the underlying query.

Note: The use of the FOR UPDATE clause is not mandatory to

obtain an updatable JDBC ResultSet. As long as the statement

used to generate the JDBC ResultSet meets the requirements for

updatable cursor, it is sufficient for the JDBC Statement that

generates the JDBC ResultSet to have concurrency mode

ResultSet.CONCUR_UPDATABLE for the ResultSet to be

updatable.

The optimizer is able to use an index even if the column in the
index is being updated.

Example :
SQL> create table ftbl (a number, b varchar2(10));
Table created.

SQL> insert into ftbl values (5,'five');
1 row created.

SQL> insert into ftbl values (6,'six');
1 row created.

SQL> insert into ftbl values (7,'seven');
1 row created.

SQL> insert into ftbl values (8,'eight');
1 row created.

SQL> insert into ftbl values (9,'nine');
1 row created.

SQL> create or replace procedure pincr as

2 cursor c_ftbl is

3 select a,b from f where length(b) = 5 for update;

4 v_a ftbl.a%type;

5 v_b ftbl.b%type;

6 begin

7 open c_ftbl;

184

8 loop

9 fetch c_ftbl into v_a, v_b;

10 exit when c_ftbl%notfound;

11 update ftbl set a=v_a+5 where current of c_ftbl;

12 end loop;

13 close c_ftbl;

14 end;

15 /

Procedure created.
SQL> exec pincr;
PL/SQL procedure successfully completed.

B) WHERE CURRENT Clause:
The WHERE CURRENT OF clause is a clause in some

UPDATE and DELETE statements. It allows we to perform
positioned updates and deletes on updatable cursors. For more
information about updatable cursors, see SELECT statement

Syntax
WHERE CURRENT OF cursor-Name

Example
SQL> create table testc (n number(3), c varchar(50));
Table created.
SQL> insert into testc values (1, 'one');
1 row created.

SQL> insert into testc values (10, 'ten');
1 row created.

SQL> insert into testc values (15, 'one five');
1 row created.

SQL> insert into testc values (99, 'nine nine');
1 row created.

SQL> insert into testc values (42, 'four two');
1 row created.

SQL> declare

2 cursor cur_test is

3 select n, c from testc for update;

4 n number(3);

5 c varchar(50);

6 begin

7 open cur_test;

8 loop

185

9 fetch cur_test into n, c;

10 exit when cur_test%notfound;

11 if n>12 then

12 update testc set n=n*2, c=upper(c) where current of
cur_test;

13 end if;

14 end loop;

15 end;

16 /

PL/SQL procedure successfully completed.

10.14 QUESTIONS

1 Write a short note on Collections in PLSQL.

2 Explain Index By Tables with help of Example.

3 Write and explain Collection methods in PLSQL.

4 How to use INDEX BY Table of Records?

5 Write a short note on PL/SQL Records and its types.

6 How to Insert and Update with PL/SQL Records?

7 What are cursors in PLSQL? Write short note on Classification
of Cursors.

8 Explain cursor with FOR loop.

9 Write a short note on %NOTFOUND and %ROWCOUNT
Attributes.

10 Explain For UPDATE Clause and WHERE CURRENT Clause.

11 How to use WHERE CURRENT Clause? Explain with help of
Example.

Practice Questions:

12 Create Table the employee with 6 fields and 10 records. Apply
the various collection methods of PLSQL on the records of the
table.

13 Update the above table records using the PLSQL record.

14 Use the %NOTFOUND and %ROWCOUNT attributes on the
same table.

15 The bank manager of Ghansoli branch decides to activate all
those accounts, which were previously marked as inactive for
performing no transactions in last 365 days. Write a PL/SQL
block to update the status of accounts. Display an appropriate
message based on the number of rows affected by the update
fired (use SQL%ROWCOUNT).

186

10.15 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani
(PHI) EEE edition

187

11

EXCEPTIONS HANDLING

Unit Structure

11.1 Objective

11.2 Introduction to Exception

11.3 Coding Structure of Exception Handling.

11.4 Rules for PL/SQL Exceptions

11.5 PRAGMA EXCEPTION_INIT

11.6 Classification of PLSQL Exception

A) The Named System Exceptions

B) The Unnamed System Exceptions

C) The Named Programmer-defined Exceptions

1.7 WHEN OTHERS clause

1.8 The SQLCODE Function

1.9The SQLERRM Function

1.10 The RAISE_APPLICATION_ERROR ()

1.11 Questions

1.12 Further Reading

11.1 OBJECTIVE

After completing this chapter, you will be able to:

 Understand the Errors and Handling Errors in PLSQL

 Understand the Structure of Exception Handling

 Implement the different types of Exception Handling Code

 Understand the PLSQL Functions like SQLCODE and
SQLEERM

 Using the RAISE_APPLICATION_ERROR ()

11.2 INTRODUCTION TO EXCEPTION

 In simple words the Exception means the problem which may
cause to interrupt the program execution.

188

 The Exception can be defined as an error situation, which arises
during program execution. When an error occurs exception is
raised, normal execution is stopped and control transfers to
exception-handling part (If it is written in the code).

 Exceptions are defined as the condition that can cause the
application into inconsistent state.

 A warning or error condition is called an Exception. Exceptions
can be internally defined or user defined. Some common
internal exceptions have predefined names, such as
ZERO_DIVIDE and STORAGE_ERROR.

 We can define exceptions of our own in the declarative part of
any PL/SQL block, subprogram, or package. For example, we
might define an exception named low_balance to flag
overdrawn bank accounts. Unlike internal exceptions, user-
defined exceptions must be given names.

 To handle raised exceptions, we have to write separate block
called Exception Handlers. After an exception handler is start its
work, the current block stops executing and the enclosing block
resumes with the next statement. If there is no enclosing block,
control returns to the current environment.

 When an error occurs, an exception is raised. That means
normal execution stops and control transfers to the exception
handling part of our PL/SQL block or subprogram. Internal
exceptions are raised automatically by the run-time system.
User-defined exceptions must be raised explicitly by RAISE
statements, which can also raise predefined exceptions.

 Using exceptions for error handling has several advantages.
Without exception handling, every time we issue a command,
we must check for execution errors.

BEGIN
SELECT ...

-- -- check for 'name not found' error
SELECT ...

-- -- check for 'name not found' error
SELECT ...

-- -- check for 'name not found' error

 The Error handling is not clearly different from normal
processing; nor is it stout. If we neglect to code a check, the
error goes undetected and is likely to cause other apparently
unrelated errors.

 Using exceptions, we can handle errors with very ease without
the need to code multiple checks, as follows:

189

BEGIN
SELECT ...
SELECT ...
SELECT ...
...

EXCEPTION
WHEN NAME_NOT_FOUND THEN -- catches all ' name not

found ‘ errors

 The Exceptions brings readability in code by separate Error-
Handling blocks.The Exceptions also improve reliability. We
need not worry about checking for an error at every point it
might occur. We just have to add an Exception Handler to
our PL/SQL block. If the exception is ever raised in that
block (or any sub-block), we can make sure it will be
handled.

 PL/SQL Exception message consists of three parts.
1) Type of Exception
2) An Error Code
3) A message

By Handling the exceptions we can ensure that the
PL/SQL block does not exit unexpectedly.

11.3 CODING STRUCTURE OF EXCEPTION
HANDLING.

The coding of Exception handling section in PLSQL is quite
simple and easy to understand. The General Syntax for coding the
exception section

DECLARE

Declaration section // Here we can declare any PLSQL
variables etc

BEGIN

Exception section // This is the section which we have to
monitor for errors

EXCEPTION

WHEN First_Exception THEN

-The statements to handle the errors

WHEN Second_Exception THEN

- The statements to handle the errors

WHEN Others THEN

- The statements to handle the errors

END;

/

190

We can use normal, general PL/SQL statements in the
Exception block. When an Exception is raised, Oracle searches for
an appropriate exception handler in the exception section. For
example in the above example, if the error raised is
'First_Exception ', then the error is handled according to the
statements under it. Since, We cannot assume all the errors at
once while coding and it is not possible to determine all the
possible runtime errors during testing our code, the 'WHEN Others'
exception is used to manage the exceptions that are not explicitly
handled. Only one exception can be raised in a Block and the
control does not return to the execution section after the error is
handled.

If there exists, nested PL/SQL blocks as given in the following:

DELCARE

Declaration section // Here we can declare any PLSQL
variables etc

BEGIN

DECLARE

Declaration section // Here we can declare any PLSQL
variables etc

BEGIN

Execution section // This is the section which we have
to monitor for outer errors

EXCEPTION

Exception section // Here we have to write the PLSQL
inner Exception Handling code

END;

EXCEPTION

Exception section // Here we have to write the PLSQL
inner Exception Handling code

END;

/

In the above case, if the exception is raised in the inner
block it should be handled in the exception block of the inner
PL/SQL block otherwise the control moves to the Exception block
of the next upper PL/SQL block. If none of the blocks handle the
exception the program ends abruptly with an error.

 Example of PLSQL Exception Handling block :

EXCEPTION

WHEN NO_DATA_FOUND THEN

v_msg := 'No company for id ' || TO_CHAR (v_id);

v_err := SQLCODE;

v_prog := 'fixdebt';

191

INSERT INTO errlog VALUES (v_err, v_msg, v_prog,
SYSDATE, USER);

WHEN OTHERS THEN

v_err := SQLCODE;

v_msg := SQLERRM;

v_prog := 'fixdebt';

INSERT INTO errlog VALUES (v_err, v_msg, v_prog,
SYSDATE, USER);

RAISE;

11.4 RULES FOR PL/SQL EXCEPTIONS

 The Exceptions declared in one block are considered local to
that block and global to all its sub-blocks. Because a block
can reference only local or global exceptions, enclosing
blocks cannot reference exceptions declared in a sub-block.

 We should not declare an exception more than once in the
similar block. We can declare the same exception in two
different separate blocks.

 If we re-declare a global exception in a sub-block, the local
declaration prevails. So, the sub-block cannot reference the
global exception unless it was declared in a labeled block, in
which case the following syntax is valid:

Block_name_label.name_of_exception

The following example illustrates the scope rules:

DECLARE
balance EXCEPTION;
customer_id NUMBER;

BEGIN
DECLARE // --- here the inner block begins

balance EXCEPTION; // -- this declaration prevails
customer_id NUMBER;

BEGIN
...
IF ... THEN

RAISE balance; // -- this is not handled because raised in
outer block

END IF;
END; // -- Here inner block ends

EXCEPTION
WHEN balance THEN // -- handle raised exception

...
END;
/

192

The enclosing block does not handle the raised exception
because the declaration of balance in the sub-block prevails.

Though they share the same name, the two balance
exceptions are different, just as the two customer_id variables
share the same name but they are different variables. Therefore,
the RAISE statement and the WHEN clause refer to different
exceptions. To have the enclosing block handle the raised
exception, we must remove its declaration from the sub-block or
define an OTHERS handler.

11.5 PRAGMA EXCEPTION_INIT() :

Associating a PL/SQL Exception with a Number: Pragma
EXCEPTION_INIT to handle error conditions (typically ORA-
messages) that have no predefined name, we must use the
OTHERS handler or the pragma EXCEPTION_INIT. A pragma is a
compiler directive that is processed at compile time and not at run
time. In PL/SQL, the pragma EXCEPTION_INIT tells the compiler
to associate an exception name with an Oracle error number. This
allows to refer to any internal exception by name and to write a
specific handler for it. When we see an error stack, or sequence of
error messages, the one on top is the one that we can trap and
handle. We code the pragma EXCEPTION_INIT in the declarative
part of a PL/SQL block, subprogram or package using the syntax
as …..

PRAGMA EXCEPTION_INIT(Name of Exception, -
Oracle_error_number);

Where ‘Name of Exception’ is the name of a previously declared
exception and the number is a negative value corresponding to an

ORA- error number. The pragma must appear somewhere after
the exception declaration in the same declarative section, as shown
in the following example:

DECLARE

problem_found EXCEPTION;

PRAGMA EXCEPTION_INIT(problem_found, -57);

BEGIN

... // -- here is Some code that causes an ORA-00057 error

EXCEPTION

WHEN problem_found THEN

// -- here we have to write the code to handle the error

END;

/

193

11.6 CLASSIFICATION OF PLSQL EXCEPTION.

There are 3 types of Exceptions.
a) The Named System Exceptions
b) The Unnamed System Exceptions
c) The Named Programmer-defined Exceptions

A) The Named system exception
The Named system exceptions are exceptions that have

been already given names by PL/SQL. They are named in the
STANDARD package in PL/SQL and do not need to be defined by
the programmer.

“Named system exceptions are not declared explicitly, that are
raised implicitly when a predefined Oracle error occurs, also that
are caught by referencing the standard name within an exception-
handling routine.”

Oracle has a standard set of exceptions already named as
follows:

Exception Name Oracle Error Explanation

DUP_VAL_ON_INDEX ORA-00001

We tried to execute an
INSERT or UPDATE
statement that has created
a duplicate value in a field
restricted by a unique
index.

TIMEOUT_ON_RESOURCE ORA-00051
We are waiting for a
resource and we timed out.

TRANSACTION_BACKED_OUT ORA-00061
The remote portion of a
transaction has rolled
back.

INVALID_CURSOR ORA-01001

We tried to reference a
cursor that does not yet
exist. This may have
happened because we've
executed a FETCH cursor
or CLOSE cursor before
OPENing the cursor.

NOT_LOGGED_ON ORA-01012
We tried to execute a call
to Oracle before logging in.

LOGIN_DENIED ORA-01017

We tried to log into Oracle
with an invalid
username/password
combination.

194

NO_DATA_FOUND ORA-01403

We tried one of the
following:

We executed a SELECT
INTO statement and no
rows are returned.

We referenced an
uninitialized row in a table.

We read past the end of
file with the UTL_FILE
package.

TOO_MANY_ROWS ORA-01422

We tried to execute a
SELECT INTO statement
and more than one row
was returned.

ZERO_DIVIDE ORA-01476
We tried to divide a
number by zero.

INVALID_NUMBER ORA-01722

We tried to execute an
SQL statement that tried to
convert a string to a
number, but it was
unsuccessful.

STORAGE_ERROR ORA-06500
We ran out of memory or
memory was corrupted.

PROGRAM_ERROR ORA-06501

This is a generic "Contact
Oracle support" message
because an internal
problem was encountered.

VALUE_ERROR ORA-06502

We tried to perform an
operation and there was a
error on a conversion,
truncation, or invalid
constraining of numeric or
character data.

CURSOR_ALREADY_OPEN ORA-06511
We tried to open a cursor
that is already open.

The syntax for the named system exception in a procedure is:

CREATE [OR REPLACE] PROCEDURE
name_of_procedure

[(param1 [,param2])]
IS

[declaration_section]
BEGIN

executable_section // The code of this section will be
monitored for errors

195

EXCEPTION
WHEN exception_name1 THEN

[statements] // Exception handling code

WHEN exception_name2 THEN
[statements] // Exception handling code

WHEN exception_name_n THEN
[statements] // Exception handling code

WHEN OTHERS THEN
[statements] // Exception handling code

END [procedure_name];

/

The syntax for the Named System exception in a function is:

CREATE [OR REPLACE] FUNCTION function_name
[(param1 [,param2])]
RETURN return_datatype

IS | AS
[declaration_section]

BEGIN
executable_section // The code of this section will be

monitored for errors

EXCEPTION
WHEN exception_name1 THEN

[statements] // Exception handling code

WHEN exception_name2 THEN
[statements] // Exception handling code

WHEN exception_name_n THEN
[statements] // Exception handling code

WHEN OTHERS THEN
[statements] // Exception handling code

END [function_name];
/

For Example: Suppose a NO_DATA_FOUND exception is raised
in a procedure, then we can write a code to handle the exception as
shown below.

BEGIN

--Execution section // The code of this section will
be monitored for errors

EXCEPTION

WHEN NO_DATA_FOUND THEN

196

dbms_output.put_line ('Sorry the given statement
dose not return any row …');

END;

/

Here is an example of a procedure that uses a Named System
Exception:

Example:

CREATE OR REPLACE PROCEDURE new_customer (cust_id IN
NUMBER, cust_name IN VARCHAR2)

IS

BEGIN

INSERT INTO customer (cid,csname) VALUES (cust_id,
cust_name);

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

raise_application_error (-20001,'We have tried to insert a
duplicate customer' id);

WHEN OTHERS THEN

raise_application_error (-20002,'An error has occurred
inserting a customer.');

END;

/

In this example, we are trying to trap the Named System Exception
called DUP_VAL_ON_INDEX.

Example: NO_DATA_FOUND EXCEPTION

SQL> DECLARE
2 uid all_users.username%TYPE := 10;
3 uname all_users.username%TYPE;
4 BEGIN
5 SELECT username
6 INTO uname
7 FROM all_users
8 WHERE user_id = uid;
9

10 DBMS_OUTPUT.put_line('uname=' || uname);
11 EXCEPTION
12 WHEN NO_DATA_FOUND THEN
13 DBMS_OUTPUT.put_line('No users have a user_id=' || uid);
14 END;
15 /

197

No users have a user_id=10
PL/SQL procedure successfully completed.

Example: ZERO_DIVIDE EXCEPTION

SQL> declare
2 n number;
3 begin
4 n:=10/0;
5 exception
6 when ZERO_DIVIDE then
7 dbms_output.put_line('zero divide error');
8 end;
9 /

zero divide error
PL/SQL procedure successfully completed.

B) The Unnamed System Exceptions
In simple terms we can refer these exceptions as exception

without proper, standard system names. Those system exception
for which oracle does not provide a name is known as unnamed
system exception. These exceptions do not occur frequently. These
Exceptions have a code and an associated message.

There are two ways to handle unnamed system exceptions:
 Using the WHEN OTHERS exception handler, or
 Associating the exception code to a name and using it as a

named exception.

We can assign a name to unnamed system exceptions using
a Pragma called EXCEPTION_INIT. EXCEPTION_INIT will
associate a predefined Oracle error number to a
programmer_defined exception name.

We have to follow some steps to use unnamed system
exceptions are also we have to keep some points in our mind while
using them as…
• They are raised implicitly.
• If they are not handled in WHEN OTHERS they must be handled
explicitly.
• To handle the exception explicitly, they must be declared using

Pragma EXCEPTION_INIT as given above and handled
referencing the user-defined exception name in the exception
section.

The general syntax to declare unnamed system exception using
EXCEPTION_INIT is as follows.

198

Syntax:

DECLARE
exception_name EXCEPTION;
PRAGMA
EXCEPTION_INIT (exception_name, Err_code);

BEGIN
Execution section
EXCEPTION

WHEN exception_name THEN
handle the exception

END;
/

Consider the customer and the order table from sql joins.
Here cid is a primary key in customer table and a foreign key in
order table. If we try to delete cid from the product table while it has
child records in oid table an exception will be thrown with oracle
code number -1517. We can provide a name to this exception and
handle it in the exception section as given below.

DECLARE
Child_record_exception EXCEPTION;
PRAGMA
EXCEPTION_INIT (Child_record_exception, -1517);

BEGIN
Delete FROM customer where cid= 345;

EXCEPTION
WHEN Child_record_exception
THEN dbms_output.put_line('Child records are present for

this product_id.');
END;
/

C) The Named Programmer-defined exception.
The database programming sometimes becomes critical due

to large number of tables present in the database and also due to
relations among the tables. So sometimes, it is not possible to
handle all the unwanted exceptions using Named and Un-named
exceptions. That’s why we need to name and trap our own
exceptions - ones that aren't defined already by PL/SQL. These are
called Named Programmer-defined exceptions.

Points to ponder while using Named Programmer-defined
exceptions:
• Named Programmer-defined exceptions should be explicitly
declared in the declaration section.
• They should be explicitly raised in the execution section.
• They should be handled by referencing the user-defined exception
name in the exception section.

199

The syntax for the Named Programmer-Defined Exception in a
procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(param1 [,param2])]

IS
[declaration_section]
exception_name EXCEPTION; // programmer defined

exception
BEGIN

executable_section
RAISE exception_name ; // rasing the programmer

defined exception
EXCEPTION

WHEN exception_name THEN
[statements] // handling the programmer defined

exception
WHEN OTHERS THEN

[statements]
END [procedure_name];
/

The syntax for the Named programmer-defined exception in a
function is:

CREATE [OR REPLACE] FUNCTION function_name
[(param1 [,param2])]
RETURN return_datatype

IS | AS
[declaration_section]

exception_name EXCEPTION;

BEGIN
executable_section

RAISE exception_name ;

EXCEPTION
WHEN exception_name THEN

[statements]

WHEN OTHERS THEN
[statements]

END [function_name];

/

Here is an example of a procedure that uses a Named
Programmer-Defined Exception:

200

Example:

CREATE OR REPLACE PROCEDURE new_customer(cut_id IN
NUMBER, CP_in IN VARCHAR)

IS

no_customer EXCEPTION;

BEGIN

IF CP_in = 'NULL' THEN

RAISE no_customer;

ELSE

INSERT INTO customerer (cid, CP)VALUES (cust_id, CP_in);

END IF;

EXCEPTION

WHEN no_customer THEN

raise_application_error (-20001,'We must have customer
Product in order to submit customer.');

WHEN OTHERS THEN

raise_application_error (-20002,'An error has occurred
inserting an Supplier.');

END;

/

In this example, we have declared a Named programmer-
defined Exception called no_customer in our declaration
statement with the following code:

no_ customer EXCEPTION;

We've then raised the exception in the executable section of the
code:

IF CP_in = ‘NULL’ THEN
RAISE no_ customer;

Now if the CP_in variable contains a NULL, our code will jump
directly to the Named programmer-defined exception called no_
customer.

Finally, we can tell the procedure what to do when the no_
customer exception is encountered by including code in the WHEN
clause:

WHEN no_ customer THEN
raise_application_error (-20001,'We must have Customer

Product in order to submit customer.');

201

11.7 WHEN OTHERS CLAUSE:

The WHEN OTHERS, clause is used to trap all the
remaining exceptions that not been handled by our Named System
Exceptions and Named Programmer-Defined Exceptions. In simple
words we can say that WHEN OTHERS, clause is used to handle
all the unknown exception or default exception handling block.
The syntax for the WHEN OTHERS clause in a procedure is:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(param1 [,param2])]

IS
[declaration_section]

BEGIN
executable_section // section to monitor for errors

EXCEPTION
WHEN exception_name1 THEN

[statements] // handling the exception

WHEN exception_name2 THEN
[statements] // handling the exception

WHEN exception_name_n THEN
[statements] // handling the exception

WHEN OTHERS THEN
[statements] // handling the all uncaught exception

END [procedure_name];

/

The syntax for the WHEN OTHERS clause in a function is:

CREATE [OR REPLACE] FUNCTION function_name
[(param1 [,param2])]
RETURN return_datatype

IS | AS
[declaration_section]

BEGIN
executable_section // Section to monitor for errors

EXCEPTION
WHEN exception_name1 THEN

[statements] // handling the exception

WHEN exception_name2 THEN
[statements] // handling the exception

WHEN exception_name_n THEN
[statements] // handling the exception

202

WHEN OTHERS THEN
[statements] // handling the all uncaught exception

END [function_name];

/

Here is an example of a procedure that uses a WHEN OTHERS
clause:

CREATE OR REPLACE PROCEDURE new_customer(cust_id IN
NUMBER, CP_in IN VARCHAR)

IS

no_cust EXCEPTION;

BEGIN

IF CP_in = 'NULL' THEN

RAISE no_cust;

ELSE

INSERT INTO customer(cid, cp) VALUES (cust_id, CP_in);

END IF;

EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

raise_application_error (-20001,'We have tried to insert a
duplicate cid.');

WHEN no_cust THEN

raise_application_error (-20001,'We must have CP in order to
submit the customer.');

WHEN OTHERS THEN

raise_application_error (-20002,'An error has occurred
inserting an customer.');

END;

/

In this example, if an exception is encountered that is not a
DUP_VAL_ON_INDEX or a no_cust, it will be trapped by the
WHEN OTHERS clause.

11.8 THE SQLCODE FUNCTION

The SQLCODE function returns the error number associated
with the most recently raised error exception. This function should
only be used within the Exception Handling section of our code:

203

EXCEPTION
WHEN exception_name1 THEN

[statements]

WHEN exception_name2 THEN
[statements]

WHEN exception_name_n THEN
[statements]

WHEN OTHERS THEN
[statements] // Here we can use the SQLCODE

function

END [procedure_name];

/

We could use the SQLCODE function to raise an error as follows:

Example :

EXCEPTION
WHEN OTHERS THEN
raise_application_error(-20001,'An error was encountered -
'||SQLCODE||' -ERROR- '||SQLERRM);
END;

/

Or we could log the error to a table as follows:

Example:

EXCEPTION
WHEN OTHERS THEN

err_code := SQLCODE;
err_msg := substr(SQLERRM, 1, 200);

INSERT INTO audit_table (error_number,
error_message)

VALUES (err_code, err_msg);
END;

/

11.9 THE SQLERRM FUNCTION

The SQLERRM function returns the error message
associated with the most recently raised error exception. This
function should only be used within the Exception Handling section
of our code:

EXCEPTION
WHEN exception_name1 THEN

[statements]

204

WHEN exception_name2 THEN
[statements]

WHEN exception_name_n THEN
[statements]

WHEN OTHERS THEN
[statements] // Here we can use the SQLERRM

function

END [procedure_name];

/

We could use the SQLERRM function to raise an error as follows:

Example:

EXCEPTION
WHEN OTHERS THEN

raise_application_error(-20001,'An error was encountered -
'||SQLCODE||' -ERROR- '||SQLERRM);
END;

/

Or we could log the error to a table as follows:

Example:

EXCEPTION
WHEN OTHERS THEN

err_code := SQLCODE;
err_msg := substr(SQLERRM, 1, 200);

INSERT INTO audit_table (error_number,
error_message)

VALUES (err_code, err_msg);
END;

/

11.10 THE RAISE_APPLICATION_ERROR ()

The RAISE_APPLICATION_ERROR is a built-in procedure
in oracle which is used to display the user-defined error messages
along with the error number whose range is in between -20000 and
-20999.

Whenever a message is displayed using
RAISE_APPLICATION_ERROR, all previous transactions which
are not committed within the PL/SQL block are rolled back
automatically (i.e. change due to INSERT, UPDATE, or DELETE
statements).

RAISE_APPLICATION_ERROR raises an exception but does not
handle it.

205

RAISE_APPLICATION_ERROR is used for the following reasons,
a) Used to create a unique id to the user-defined exception.
b) Used to make the user-defined exception look like an Oracle
error.

The General Syntax to use this procedure is:

RAISE_APPLICATION_ERROR (error_number, error_message);

• The Error number must be between -20000 and -20999
• The Error_message is the message we want to display when the
error occurs.

Steps to be followed to use RAISE_APPLICATION_ERROR
procedure:
1. Declare a user-defined exception in the declaration section.
2. Raise the user-defined exception based on a specific business
rule in the execution section.
3. Finally, catch the exception and link the exception to a user-
defined error number in RAISE_APPLICATION_ERROR.

Using the following example we can display a error message using
RAISE_APPLICATION_ERROR.

DECLARE

large_quantity EXCEPTION;

CURSOR product_quantity is

SELECT p.pname as name, sum(o.total_unit) as units

FROM orders o, product p

WHERE o.pid = p.pid;

quantity orders.total_unit%type;

up_limit CONSTANT orders.total_unit%type := 20;

message VARCHAR2(50);

BEGIN

FOR product_rec in product_quantity LOOP

quantity := product_rec.units;

IF quantity > up_limit THEN

RAISE large_quantity;

ELSIF quantity < up_limit THEN

message:= 'The number of unit is below the discount
limit.';

END IF;

dbms_output.put_line (message);

END LOOP;

EXCEPTION

206

WHEN large_quantity THEN

raise_application_error(-2100, 'The number of unit is
above the discount limit.');

END;

/

11.11 QUESTIONS

1. Explain Exception. Explain the syntax of exception handling in
PL/SQL.

2. Explain the parts of exception message in PL/SQL.

3. Write short note on scope rules of PL/SQL exception.

4. List and explain types of PL/SQL exception in short.

5. List and explain NAMED System exceptions.

6. What UNNAMED exception? Explain with examples.

7. Explain in detail programmer defined exception with examples.

8. Explain use of WHEN OTHER clause with example.

9. Write short note on SQLCODE and SQLERRM functions.

10.Explain in detail use of RAISE_APPLICATION_ERROR ().

Practice Questions:

11.Write a PL/SQL block of code which shows the use of exception
handling.

12.Write a PL/SQL block of code which shows the use of user
define exception.

11.12 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani
(PHI) EEE edition

207

UNIT - V

12

STORED PROCEDURE

Unit Structure

12.1 Objectives

12.2 Creating a Modularized and Layered Subprogram Design

12.2.1 Modularize code into subprograms.

12.2.2 Create subprogram layers for your application.

12.3 The benefits of using modular program constructs:

12.4 What is a Stored Procedure?

12.5 Comparison of anonymous blocks and sub programs in PL
SQL:

12.5.1 Stored Program Units (The Procedures & Functions)

12.5.2 Naming Procedures and Functions

12.6 PROCEDURE PARAMETERS:

12.6.1 IN and OUT MODE

12.6.2 IN OUT MODE

12.7 EXAMPLE OF PROCEDURE:

12.8 Stored Functions:

12.9 FUNCTION PARAMETERS:

12.10 EXAMPLE OF FUNCTION :

12.11 Difference between Procedures & Functions :

12.12 Questions :

12.13 Further Reading :

12.1 OBJECTIVES:

After completing this chapter, you will be able to:

 Create a Modularized and Layered Subprogram

 Understand the advantages of modular program constructs

 Understand the Creation and use of Stored Procedure

 Understand the Functions and its parameters

 Understand the Difference between Procedures & Functions

 Utilizing the stored procedures in critical PLSQL queries

208

12.2 CREATING A MODULARIZED AND LAYERED
SUBPROGRAM DESIGN

The modularized and layered subprogram design is nothing
but the appropriate arrangement of PLSQL blocks or procedures
while writing the code. This arrangement gives the readability to
code as well as ease to handle and modify the code for developer.
With this code anybody can have the sense to understand the code
and its execution hierarchy.

12.2.1 Modularize code into subprograms.
1. Locate code sequences repeated more than once.
2. Create subprogram P containing the repeated code.
3. Modify original code to invoke the new subprogram.

12.2.2 Create subprogram layers for your application.
1. Data access subprogram layer with SQL logic
2. Business logic subprogram layer, which may or may not use

data access layer

PL/SQL is a block-structured language. The PL/SQL code block
helps modularize code by using:

1. Anonymous blocks
2. Procedures and functions
3. Packages
4. Database triggers

12.3 THE BENEFITS OF USING MODULAR
PROGRAM CONSTRUCTS:

The PLSQL modular programs Subprograms support
reusability. Once tested, a subprogram can be reused in any
number of applications. We can call PL/SQL subprograms from
many different environments, so we can use it in any new language
or API to access the database.

Subprograms promote maintainability. We can change the
internals of a subprogram without changing other subprograms that
call it. Subprogram plays a major role in other maintainability
features, such as packages and object types.

209

The PLSQL modular programs allow us to extend the
PL/SQL language. Procedures act like new statements. Functions
act like new expressions and operators. Subprogram allows us to
break a program down into manageable, well-defined modules. We
can use stepwise refinement approach to problem solving.

Model subprograms allow us to distinguish the definition of
procedures and functions unless the main program is tested. You
can design applications with the top down approach without
worrying about implementation details.

When we use PL/SQL subprograms to define an API, we
can make our code even more reusable and maintainable by
grouping the subprograms into a PL/SQL package.

We can summarize the benefits of PLSQL modular program
construct as follows:

1. Easy to maintain: Because the code is well arranged so it very
easy to maintain for the developers.

2. Better data security and integrity: The code is separated in
layered paradigm so that it helps to improve the security and the
data integrity.

3. Better performance: Due to separation and sequential
arrangement the code suppose to give improved performance.

4. Better code clarity: The code is layered and every layer
contains the self explanatory code which improves the code
readability and clarity.

12.4 WHAT IS A STORED PROCEDURE?

A stored procedure or in simple a subroutine or a proc or a
subprogram is a named PL/SQL block which performs one or more
specific task. The stored procedures are written in advance and
compiled before its use. This improves the speed of execution. This
is similar to a procedure or functions in other programming
languages. A procedure has a header and a body. The header
consists of the name of the procedure and the parameters or
variables passed to the procedure. The body consists or
declaration section, execution section and exception section similar
to a general PL/SQL Block. A procedure is similar to an anonymous
PL/SQL Block but it is named for repeated usage.

210

12.5 COMPARISON OF ANONYMOUS BLOCKS AND
SUB PROGRAMS IN PL SQL:

 Anonymous is unnamed PL/SQL block, cannot save in
database, cannot allow any mode of parameter.

 Stored programs are saved into database and we can recall
them whenever program requires it, it accepts the mode of
parameter like in, in out, out.

 An anonymous block is a PL/SQL block that appears in our
application and is not named. A stored procedure or a named
block is a PL/SQL block that oracle stores in the database and
can be called by name from any application.

 Anonymous blocks are not stored in the database so they
cannot be called from other blocks; whereas stored
subprograms are stored in the database they can be called from
other blocks many times.

 Anonymous blocks are compiled each time they are executed,
where as stored subprograms compile only one time when they
are created.

12.5.1 Stored Program Units (The Procedures & The
Functions)

A stored procedure and functions are PL/SQL program unit
which has a name, which can take parameters, and can return
values, which are stored in the data dictionary and also they can be
called by many users.

The term stored procedure is sometimes used generically for
both stored procedures and stored functions. The only difference
between procedures and functions is that functions always return a
single value to the caller, while procedures do not return a value to
the caller.

12.5.2 Naming Procedures and Functions

A PLSQL procedure or function must be named because it is
stored in the database. Each publicly-visible procedure or function
in a schema must have a unique name, and the name must be a
legal PL/SQL identifier.

If we plan to call a stored procedure using a stub generated
by SQL*module, then the stored procedure name must also be a
legal identifier in the calling host 3GL language, such as Ada or C.
The point here to remember that, the name of PLSQL procedure is
the unique identifier in database system. So we are not able to
make more than one procedure with similar name.

211

 CREATE PROCEDURE :
The general format of a create procedure statement is :

CREATE [OR REPLACE] PROCEDURE procedure_name
[(param1 [,param2])]

IS
[declaration_section] // Application variables

BEGIN
[executable_section] // Application Logic

EXCEPTION
[exception_section] // Exception handling statements

END [procedure_name];
/

The following is a simple example of a procedure:

Example 1: (Simple procedure without parameter)

SQL> set serveroutput on
SQL> CREATE OR REPLACE PROCEDURE DEMO AS

2 BEGIN
3 DBMS_OUTPUT.PUT_LINE('HELLO WORLD');
4 END;
5 /

Procedure created.

Example 2 : (Simple procedure with parameters)
Note:(This procedure can be called Using PLSQL block as shown
below point 3rd of CALL procedure section.)

SQL> CREATE OR REPLACE PROCEDURE Square(sq_num INT,
sq OUT INT) AS

2 BEGIN
3 sq:= sq_num*sq_num;
4 DBMS_OUTPUT.PUT_LINE('Square of entered number is ' ||

sq);
5 END;
6 /

Procedure created.

 CALL PROCEDURE :
You can call procedure in three ways-

1.Using EXECUTE
Example 1 Executl :
SQL> EXECUTE DEMO
HELLO WORLD
PL/SQL procedure successfully completed.

212

2.Using CALL
Example 1 Call:

SQL> call HELLO();
Hello World
Call completed.

3.Using PL/SQL block
Example 1 call :

SQL> begin
2 HELLO();
3 end;
4 /

Hello World
PL/SQL procedure successfully completed.

Example 2 call :

SQL> Declare
2 my_num int;
3 Begin
4 SQUARE(4,my_num);
5 END;
6 /

Square of entered number is 16
PL/SQL procedure successfully completed.

12.6 PROCEDURE PARAMETERS

The Parameter modes define the behavior of formal
parameters. The three parameter modes, IN (That is always
Default), OUT, and IN OUT, can be used with any subprogram
wherever necessary. However, avoid using the OUT and IN OUT
modes with functions. The purpose of a function is to take no
arguments and return a single value. There are three types of
parameters that can be declared:

IN OUT IN OUT

It is the default. It must be
specified.

It must be specified.

Passes values to a
subprogram.

Returns values to
the caller.

Passes initial values to
a subprogram; returns
updated values to the
caller.

213

Formal parameter
acts like a constant.

Formal parameter
acts like an
uninitialized
variable.

Formal parameter acts
like an initialized
variable.

Formal parameter
cannot be assigned a
value.

Formal parameter
cannot be used in
an expression;
must be assigned
a value.

Formal parameter
should be assigned a
value.

Actual parameter can
be a constant,
initialized variable,
literal, or expression.

Actual parameter
must be a
variable.

Actual parameter must
be a variable.

Example 1:

12.6.1 IN and OUT MODE

SQL> CREATE OR REPLACE

2 PROCEDURE SUM_AB (A IN INT, B IN INT, C OUT INT) IS

3 BEGIN

4 C := A + B;

5 END;

6 /

Procedure created.

SQL> DECLARE

2 R INT;

3 BEGIN

4 SUM_AB(23,29,R);

5 DBMS_OUTPUT.PUT_LINE('SUM IS: ' || R);

6 END;

7 /

SUM IS: 52

PL/SQL procedure successfully completed.

Example 2:

SQL> CREATE OR REPLACE PROCEDURE CONCAT

(subchars1 IN STRING, subchars2 IN STRING, ConcChar OUT
STRING) IS

214

2 BEGIN

3 ConcChar:= subchars1 + subchars2;

4 DBMS_OUTPUT.PUT_LINE('After Concatination of characters word
is ' || ConcChar);

5 END;

6 /

Procedure created.

SQL> DECLARE

2 my_char STRING(10);

3 BEGIN

4 CONCAT('SONA','LI', my_char);

5 END;

6 /

After Concatination of characters word is SONALI
PL/SQL procedure successfully completed.

12.6.2 IN OUT MODE

Example 1 :

SQL> set serveroutput on

SQL> CREATE OR REPLACE

2 PROCEDURE DOUBLEN (N IN OUT INT) IS

3 BEGIN

4 N := N * 2;

5 END;

6 /

Procedure created.

SQL> DECLARE

2 R INT;

3 BEGIN

4 R := 7;

5 DBMS_OUTPUT.PUT_LINE('BEFORE CALL R IS: ' || R);

6 DOUBLEN(R);

7 DBMS_OUTPUT.PUT_LINE('AFTER CALL R IS: ' || R);

8 END;

9 /

BEFORE CALL R IS: 7

AFTER CALL R IS: 14

PL/SQL procedure successfully completed.

215

Example 2 :
SQL> CREATE OR REPLACE PROCEDURE DIVISION

(my_num1 int,my_num2 IN OUT INT) IS
2 BEGIN
3 my_num2 := my_num1 / my_num2;
4 END;
5 /

Procedure created.

SQL> DECLARE
2 num1 INT;
3 num2 INT;
4 BEGIN
5 num1 := 180;
6 num2 := 18;
7 DBMS_OUTPUT.PUT_LINE('BEFORE IN OUT DIVISION NUMBER

IS: ' || num2);
8 DIVISION(num1,num2);
9 DBMS_OUTPUT.PUT_LINE('AFTER CALL to DIVSION IN OUT

NUMBER IS: ' || num2);

10 END;
11 /

BEFORE IN OUT DIVISION NUMBER IS: 18
AFTER CALL to DIVSION IN OUT NUMBER IS: 10

PL/SQL procedure successfully completed.

 HOW TO VIEW SOURCE CODE OF PROCEDURE?

SQL> SELECT TEXT FROM USER_SOURCE WHERE
NAME='HELLO';
TEXT

PROCEDURE HELLO IS
BEGIN
DBMS_OUTPUT.PUT_LINE('Hello World');
END;

 DROP PROCEDURE
If we’re interested in getting rid of a procedure totally, we can
DROP it. The general
format of a DROP is:

DROP PROCEDURE procedure_name;

SQL>DROP PROCEDURE DEMO;

Procedure dropped.

216

 VIEW LIST OF ALL PROCEDURE

SQL> SELECT OBJECT_NAME
2 FROM USER_OBJECTS
3 WHERE OBJECT_TYPE = 'PROCEDURE';

OBJECT_NAME
--
DISPLAYINFO
DEMO
DOUBLEN
SUM_AB
DISP_AB

5 rows selected.

12.7 EXAMPLE OF PROCEDURE

SQL> create table student(
2 rollno number(4) primary key, name varchar(4),
3 mark1 number(4),
4 mark2 number(4),
5 mark3 number(4)
6);

Table created.

SQL> insert into student values(1,'abc',56,78,89);

1 row created.

SQL> insert into student values(2,'pqr',55,44,66);

1 row created.

SQL> insert into student values(3,'xyz',56,78,89);

1 row created.

SQL> insert into student values(4,'qwe',55,44,66);

1 row created.

SQL> insert into student values(5,'iop',56,78,89);

1 row created.

SQL> insert into student values(6,'tgb',55,44,66);

217

1 row created.

SQL> select * from student;

ROLLNO NAME MARK1 MARK2 MARK3
---------- ---- ---------- ---------- ----------
1 abc 56 78 89

2 pqr 55 44 66
3 xyz 56 78 89
4 qwe 55 44 66
5 iop 56 78 89
6 tgb 55 44 66

===

CREATE OR REPLACE PROCEDURE displayinfo(

p_rollno IN student.rollno%TYPE,

o_name OUT student.name%TYPE,

o_mark1 OUT student.mark1%TYPE,

o_mark2 OUT student.mark2%TYPE,

o_mark3 OUT student.mark3%TYPE)

IS

BEGIN

SELECT name,mark1,mark2,mark3

INTO o_name,o_mark1,o_mark2 ,o_mark3

FROM student WHERE rollno = p_rollno;

END;

/

===

DECLARE

o_name student.name%TYPE;

o_mark1 student.mark1%TYPE;

o_mark2 student.mark2%TYPE;

o_mark3 student.mark3%TYPE;

total NUMERIC;

BEGIN

displayinfo(1,o_name,o_mark1,o_mark2 ,o_mark3);

DBMS_OUTPUT.PUT_LINE('name : ' || o_name);

DBMS_OUTPUT.PUT_LINE('mark1 : ' || o_mark1);

DBMS_OUTPUT.PUT_LINE('mark2 : ' || o_mark2);

DBMS_OUTPUT.PUT_LINE('mark3 : ' || o_mark3);

total:=o_mark1+o_mark2 +o_mark3 ;

DBMS_OUTPUT.PUT_LINE('Total : ' || total);

END;

218

PL/SQL procedure successfully completed.

name : abc

mark1 : 56

mark2 : 78

mark3 : 89

Total : 223

12.8 STORED FUNCTIONS

A stored function (also called a user function or user
defined function) is a set of PL/SQL statements you can call by
name. Stored functions are very similar to procedures, except that a
function returns a value to the environment in which it is called.
User functions can be used as part of a SQL expression. Use the
CREATE FUNCTION statement to create a standalone stored function.

Functions are special types of procedures that have the
capability to return a value. It is very oblivious question of when to
use what, either functions or procedures. If we’re interested in the
“results” of the code, then we use a function, and return those
results. If we are interested in the “side effects” (like table updates,
etc.) and not about the “result”, then use a procedure. Usually it
doesn’t affect the code all that much if we use a procedure or a
function.

The general format of a create function statement is :

CREATE [OR REPLACE] FUNCTION function_name
[(param1 [,param2])]
RETURN return_datatype

IS | AS
[declaration_section] // Application variables

BEGIN
[executable_section] // Application logic

EXCEPTION
[exception_section] // Exception handling Code

END [function_name];
/

EXAMPLE 1 :
SQL> set serveroutput on

SQL> CREATE OR REPLACE FUNCTION ADD2 (X INT, Y INT)

RETURN INT IS

2 BEGIN

3 RETURN (X + Y);

4 END;

219

5 /

Function created.

Example 2:

SQL> CREATE OR REPLACE FUNCTION STRINGRETURN (

myname STRING) RETURN STRING IS

2 BEGIN

3 RETURN (myname);

4 END;

5 /

Function created.

CALL FUNCTION :
Call for Example 1:
SQL> BEGIN

DBMS_OUTPUT.PUT_LINE ('RESULT IS:' || ADD2 (25,50));

END;

/

RESULT IS:75

PL/SQL procedure successfully completed.

Call for Example 2:
SQL> BEGIN
1 DBMS_OUTPUT.PUT_LINE ('MY NAME IN FUNCTION IS: ' ||

STRING_RETURN('YASHASHREE'));
3 END;
4 /

MY NAME IN FUNCTION IS: YASHASHREE

PL/SQL procedure successfully completed.

12.9 FUNCTION PARAMETERS

The Parameter modes define the behavior of formal
parameters. The three parameter modes, IN (That is always
Default), OUT, and IN OUT, can be used with any subprogram
wherever necessary. However, avoid using the OUT and IN OUT
modes with functions. The purpose of a function is to take no
arguments and return a single value.. There are three types of
parameters that can be declared:

1. IN - The parameter can be referenced by the procedure or
function. The value of the parameter cannot be overwritten by
the procedure or function.

220

2. OUT - The parameter cannot be referenced by the procedure or
function, but the value of the parameter can be overwritten by
the procedure or function.

3. IN OUT - The parameter can be referenced by the procedure or
function and the value of the parameter can be overwritten by
the procedure or function.

SOURCE CODE OF FUNCTION

SQL> SELECT TEXT FROM USER_SOURCE WHERE
NAME='ADD2';
TEXT

FUNCTION ADD2 (X INT, Y INT) RETURN INT IS
BEGIN
RETURN (X + Y);
END;

DROP FUNCTION
If you’re interested in getting rid of a function totally, you can DROP
it.
The general format of a DROP is:
DROP FUNCTION function_name;

SQL>DROP FUNCTION ADD2;
Procedure dropped.

LIST OF ALL FUNCTION
SQL> SELECT OBJECT_NAME

2 FROM USER_OBJECTS
3 WHERE OBJECT_TYPE = 'FUNCTION';

OBJECT_NAME

DISPLAY1
ADD2
5 rows selected.

12.10 EXAMPLE OF FUNCTION

SQL> CREATE OR REPLACE FUNCTION display(

2 p_rollno IN student.rollno%TYPE,

3 o_name OUT student.name%TYPE,

4 o_mark1 OUT student.mark1%TYPE,

5 o_mark2 OUT student.mark2%TYPE,

6 o_mark3 OUT student.mark3%TYPE)

221

7 RETURN NUMBER

8 IS total NUMBER;

9 BEGIN

10 SELECT name,mark1,mark2,mark3

11 INTO o_name,o_mark1,o_mark2 ,o_mark3

12 FROM student WHERE rollno = p_rollno;

13 total:=o_mark1+o_mark2 +o_mark3 ;

14 RETURN(total);

15 END;

16 /

Function created.

SQL> DECLARE

2 o_name student.name%TYPE;

3 o_mark1 student.mark1%TYPE;

4 o_mark2 student.mark2%TYPE;

5 o_mark3 student.mark3%TYPE;

6 total NUMERIC;

7 BEGIN

8 total:= display(1,o_name,o_mark1,o_mark2 ,o_mark3);

9 DBMS_OUTPUT.PUT_LINE('name : ' || o_name);

10 DBMS_OUTPUT.PUT_LINE('mark1 : ' || o_mark1);

11 DBMS_OUTPUT.PUT_LINE('mark2 : ' || o_mark2);

12 DBMS_OUTPUT.PUT_LINE('mark3 : ' || o_mark3);

13 DBMS_OUTPUT.PUT_LINE('Total : ' || total);

14 END;

15 /

name : abc

mark1 : 56

mark2 : 78

mark3 : 89

Total : 223

PL/SQL procedure successfully completed.

12.11 DIFFERENCE BETWEEN PROCEDURES &
FUNCTIONS

Procedures are traditionally the workhorse of the coding
world and functions are traditionally the smaller, more specific
pieces of code. In general, if you need to update the chart of
accounts, you would write a procedure. If you need to retrieve the

222

organization code for a particular GL account, you would write a
function.

Here are a few more differences between a procedure and a
function:

 A function MUST return a value.

 A procedure cannot return a value.

 Procedures and functions can both return data in OUT and
IN OUT parameters

 The return statement in a function returns control to the
calling program and returns the results of the function

 The return statement of a procedure returns control to the
calling program and cannot return a value

 Functions can be called from SQL, procedure cannot

 Functions are considered expressions, procedure are not

12.12 QUESTIONS

1. How to create Modularized and Layered Subprogram?

2. What is a Stored Procedure?

3. Explain Difference between anonymous blocks and sub

programs in PL SQL.

4. How to create and call Stored Procedure Explain with help of

Example.

5. Write short note on PROCEDURE PARAMETERS.

6. Give the example for using PARAMETERS in Procedures.

7. What are stored functions? Write its Creation and calling

Example.

8. Write short note on Function PARAMETERS.

9. Give a brief example of Stored Function.

10.Explain the Difference between Procedures & Functions.

12.13 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

223

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani

(PHI) EEE edition

224

13

PACKAGE

Unit Structure :

13.1 Objectives

13.2 What is Package?

13.3 Contents of PL/SQL Package:

13.4 Introduction to PL/SQL Package:

13.5 Advantages of Package:

13.6 Components of Packages

13.7 Data Dictionary and PL/SQL Source Code:

13.8 Overloading Subprograms in PL/SQL:

13.9 The STANDARD Package

13.10 Product-Specific Packages:

13.11 Points to ponder for Writing Packages:

13.12 Questions:

13.12 Further reading

13.1 OBJECTIVES

After completing this chapter, you will be able to:

 Learn and understand the Complete Structures of Packages

 Understand the advantages of Packages

 Understand the Components of packages

 Overload Subprograms in PL/SQL etc.

13.2 WHAT IS PACKAGE?

The PLSQL package is nothing but logical grouping of
functions and stored procedures that can called and referenced by
the single name.

The package is an encapsulated collection of related
program objects for example, procedures, functions, variables,
constants, cursors, and exceptions stored together in the database.
Also a package is a schema object that groups logically related

225

PL/SQL types, variables, and subprograms. Using packages is an
alternative to creating procedures and functions as standalone
schema objects.

Packages have two parts, a specification and a body;
sometimes the body is unnecessary. The specification is the
interface to the package. It declares the types, variables, constants,
exceptions, cursors, and subprograms that can be referenced from
outside the package. The body defines the queries for the cursors
and the code for the subprograms. We can think of the specification
as an interface and of the body as a black box. We can debug,
enhance, or replace a package body without changing the package
spec (specification). To create package specs, we have to use the
SQL statement CREATE PACKAGE. A CREATE PACKAGE
BODY statement defines the package body. The spec holds public
declarations, which are visible to stored procedures and other code
outside the package. We must declare subprograms at the end of
the spec after all other items.

The body holds implementation details and private
declarations, which are hidden from code outside the package.
Following the declarative part of the package body is the optional
initialization part, which holds statements that initialize package
variables and do any other one-time setup steps. The AUTHID
clause determines whether all the packaged subprograms execute
with the privileges of their definer or invoker, and whether their
unqualified references to schema objects are resolved in the
schema of the definer or invoker.

A call spec lets we map a package subprogram to a Java
method or external C function. The call spec maps the Java or C
name, parameter types, and return type to their SQL counterparts.

13.3 CONTENTS OF PL/SQL PACKAGE:

The following things are contained in a PL/SQL package:

 Declarations of cursor with the text of SQL queries:
Reusing exactly the same query text in multiple locations is
faster than retyping the same query each time with slight
differences. It is also easier to maintain if we need to change
a query that is used in many places.

 Get and Set methods for the package variables, if we want
to avoid letting other procedures read and write them
directly.

 Procedures and functions declaration that call each
other: We do not need to worry about compilation order for
packaged procedures and functions, making them more

226

convenient than standalone stored procedures and functions
when they call back and forth to each other.

 Exceptions declarations: Normally, we need to be able to
reference these from different procedures, so that we can
handle exceptions within called subprograms. The naming
and declaration should be in the proper block and scope.

 Declarations for overloaded procedures and functions:
We can create multiple variations of a procedure or function,
using the same names but different sets of parameters.

 Variables that we want to remain available between
procedure calls in the same session. We can treat variables
in a package like global variables.

 Only the declarations in the package spec are visible and
accessible to applications. Implementation details in the
package body are hidden and inaccessible. We can change
the body (implementation) without having to recompile
calling programs.

 Type declarations for PL/SQL collection types: To pass a
collection as a parameter between stored procedures or
functions, we must declare the type in a package so that
both the calling and called subprogram can refer to it.

13.4 INTRODUCING TO PL/SQL PACKAGE:

PL/SQL package is a group of related stored functions,
procedures, types, cursors and etc. PL/SQL package is like a
library once written stored in the Oracle database and can be used
by many applications. A package has two parts:

 A package specification is the public interface of your
applications. The public here means the stored function,
procedures, type … are accessible by other applications.

 A package body contains the code that implements the
package specification.

PL/SQL Package

227

13.5 ADVANTAGES OF PACKAGE:

1. All related function and procedure can be grouped together in a
single unit called packages and also all the things can be
referred by using single name.

2. Packages are reliable to granting privileges.

3. All function and procedure within a package can share variable
among them.

4. Package enables to perform "overloading" of functions and
procedures.

5. Package improve performance by loading the multiple object
into memory at once, therefore , subsequent calls to related
program do not required physical I/O.

6. Package is reduce the traffic because all block execute all at
once

13.6 COMPONENTS OF PACKAGES

Specification: It contains the list of various functions, procedure
names which will be a part of the package.

Body: This contains the actual PL/SQK statement code
implementing the logics of functions and procedures declared in
"specification".

Defining Package Specification

CREATE or REPLACE PACKAGE <Package Name>
{is,as}
PROCEDURE [Schema..] <ProcedureName>

(<argument> {IN,OUT,IN OUT} <Data Type>,..);
FUNCTION [Schema..] <Function Name>

(<argument> IN <Data Type>,..)
RETURN <Data Type>);

Creating Package Body

CREATE or REPLACE PACKAGE BODY <Package Name>
{is,as}
PROCEDURE [Schema..] <ProcedureName>

(<argument> {IN,OUT,IN OUT} <Data Type>,..)
{IS, AS}
<variable> declarations;
<constant> declarations;

BEGIN
<PL/SQL subprogram body> // Application logic goes here

228

EXCEPTION
<PL/SQL Exception block> // Exception handling code goes
here

END;
FUNCTION [Schema..] <FunctionName>(<argument> IN
<Data Type>,..)

return <Data Type> {IS,AS}
<variable> declarations;
<constant> declarations;

BEGIN
<PL/SQL subprogram body> // Application code goes here

EXCEPTION
<PL/SQL Exception block> // Exception handling code

goes here

END;

END;
/

Example 1 :

Defining Package Specification

SQL> create or replace package pkg_demo
2 as
3 function cArea (r NUMBER) return NUMBER;
4 procedure pPrint (str1 VARCHAR2 :='hello',
5 str2 VARCHAR2 :='world',
6 str3 VARCHAR2 :='!');
7 end;
8 /

Package created.

Defining Package Body

SQL> create or replace package body pkg_demo
2 as
3 function cArea (r NUMBER)return NUMBER
4 is
5 pi NUMBER:=3.14;
6 begin
7 return (pi * r *r);
8 end;
9 procedure pPrint(str1 VARCHAR2 :='hello',

10 str2 VARCHAR2 :='world',

229

11 str3 VARCHAR2 :='!')
12 is
13 begin
14 DBMS_OUTPUT.put_line(str1||','||str2||str3);
15 end;

16 end;
17 /

Package body created.

Example 2 :
To use following Example we need to create table as shown in
following digram:
Table : emp

SQL> CREATE SEQUENCE empid;

Sequence created.

SQL> CREATE OR REPLACE PACKAGE emp_constraints
AS -- spec

2 TYPE emprectype IS RECORD (empid INT, salary
REAL);

3 CURSOR draw_salary RETURN emprectype;
4 PROCEDURE hire_emp (
5 empname VARCHAR2,
6 empage VARCHAR2,
7 salary NUMBER,
8 Hiredate date,
9 job VARCHAR2,empid int);

10
11 PROCEDURE fire_employee (emp_id NUMBER);
12 END emp_constraints ;
13 /

Package created.

Empname empage salary Job_title Hiredate empid

Amol 29 29000 Manager 23/11/1998 1

Suresh 27 26000 Developer 16/10/1999 2

Kapil 28 28000 Designer 05/08/2000 3

Pappu 22 17000 Designer 18/06/2001 4

Prashant 25 18000 Tester 11/10/2002 5

KomaL 23 18500 Executive 23/10/2003 6

230

SQL> CREATE OR REPLACE PACKAGE BODY emp_ constraints
AS -- body

2 CURSOR draw_salary RETURN emprectype IS
3 SELECT empid, salary FROM emp ORDER BY salary DESC;
4 PROCEDURE hire_emp (
5 empname VARCHAR2,
6 empage VARCHAR2,
7 salary NUMBER,
8 Hiredate date,
9 job VARCHAR2,

10 empid int) IS
11 BEGIN
12 INSERT INTO emp VALUES
13
(empname,empage,salary,SYSDATE,job,empid_seq.NEXTVAL);
14 END hire_emp;
15
16 PROCEDURE fire_employee(emp_id NUMBER) IS
17 BEGIN
18 DELETE FROM emp WHERE eid = empid;
19 END fire_employee;
20 END emp_ constraints ;
21 /

Package body created.

 Call Package Function(For Example 1)

SQL> SELECT pkg_demo.cArea(2) FROM DUAL;

PKG_DEMO.CAREA(2)

12.56

 Call Package Procedure(For Example 1)

SQL> call pkg_demo.pPrint();
hello,world!

Call completed.

 Package Alter

Package Alter Syntax
ALTER PACKAGE <Package Name> COMPILE BODY;
/
Package Alter Code:
SQL>ALTER PACKAGE pkg1 COMPILE BODY;

Package body Altered.

231

 Package Drop

Package Drop Syntax:

DROP PACKAGE <Package Name>;
Package Drop Code:

SQL>DROP PACKAGE pkg1;

Package dropped.

13.7 DATA DICTIONARY AND PL/SQL SOURCE
CODE:

Oracle's data dictionary provides information that Oracle

needs to perform its tasks. This information consists of definition,

allocated and used storage size for database objects, default

column values, integrity constraints, names of and privileges

granted to users, auditing information and more.

The datadictionary is stored in a few tables owned by SYS

(the so called dictionary base tables. Their content is exposed

through the static dictionary views. These views and tables should

not be written to, only selected. The base tables are stored in the

system tablespace (which is always available when the database is

open).

The data dictionary is updated when a DDL statement is

executed. The following views are part of the data dictionary.

Find all views along with a comment in dict:

select * from dict;

13.8 OVERLOADING SUBPROGRAMS IN PL/SQL:

 2 or more procedures or functions are called overloaded
when
a) They have the same names
b) Different no of formal parameters defined
c) Formal parameters differ in their datatypes/Subtypes and
not in the same family
d) They belong to same subprogram/package/PL SQL Block

 They are not overloaded when
a) Any of the above points are not satisfied
b) RETURN datatype alone differs and not the formal

parameters

232

The main purpose of overloading procedures is that, when a
PL SQL block is found to do a same operation with different inputs,
we names them same and feed different parameters

Example :
SQL> create or replace package pkg_demo1

2 as
3 procedure pOvr(a in int, b in int);
4 procedure pOvr (str1 VARCHAR2 :='hello',
5 str2 VARCHAR2 :='world',
6 str3 VARCHAR2 :='!');
7 end;
8 /

Package created.

SQL> create or replace package body pkg_demo1
2 as
3 procedure pOvr(a in int, b in int)
4 is
5 c int;
6 begin
7 c := a + b;
8 dbms_output.put_line(c);
9 end;

10 procedure pOvr(str1 VARCHAR2 :='hello',
11 str2 VARCHAR2 :='world',
12 str3 VARCHAR2 :='!')
13 is
14 begin
15 dbms_output.put_line(str1||','||str2||str3);
16 end;
17 end;
18 /

Package body created.

SQL> call pkg_demo1.pOvr();
hello,world!

Call completed.

SQL> call pkg_demo1.pOvr(2,3);
5

Call completed

233

13.9 THE STANDARD PACKAGE:

How Package STANDARD Defines the PL/SQL Environment?
The package STANDARED provides some predefined

functions, procedures in the PL/SQL that are handy when
developing the PL/ASQL applications. It defines the PL/SQL
environment. The package spec globally declares types,
exceptions, and subprograms, which are available automatically to
PL/SQL programs. This package can be utilized with bunch of
PLSQL subprograms to perform the specific task. The best thing
about it is that it can be used n number of times. For example,
package STANDARD declares function ABS, which returns the
absolute value of its argument, as follows:

FUNCTION ABS (t NUMBER) RETURN NUMBER;

The contents of the package STANDARD are directly visible
to applications. We do not need to write references to its contents
by prefixing the package name. For example, we might call ABS
from a database trigger, stored subprogram, Oracle tool, as follows:

abs_diff := ABS(x - y);

If we redeclare ABS in a PL/SQL program, our local
declaration overrides the global declaration. However, we can still
call the built-in function by qualifying the reference to ABS, as
follows:

abs_diff := STANDARD.ABS(x - y);

Most built-in functions are overloaded. For example,
package STANDARD contains the following declarations:

FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN
VARCHAR2;
FUNCTION TO_CHAR (left NUMBER, right VARCHAR2)
RETURN VARCHAR2;

PL/SQL resolves a call to TO_CHAR by matching the
number and datatypes of the formal and actual parameters.

13.10 PRODUCT-SPECIFIC PACKAGES:

The product specific packages helps programmer to use
them at specific programming condition. Oracle and various Oracle
tools are supplied with product-specific packages that help we build

234

PL/SQL-based applications. For example, Oracle is supplied with
many utility packages, a few of which are highlighted below.

 DBMS_ALERT Package :
Package DBMS_ALERT allows us to use database triggers

to alert an application when specific database values change. The
alerts are transaction based and asynchronous (that is, they
operate independently of any timing mechanism). For example, a
company might use this package to update the value of its
investment portfolio as new stock and bond quotes arrive.
We can also use DBS package in the exception handling
mechanism to show the error message.

 DBMS_OUTPUT Package :
Package DBMS_OUTPUT enables us to display output from

PL/SQL blocks and subprograms, which makes it easier to test and
debug them. The procedure put_line outputs information to a buffer
in the SGA. We display the information by calling the procedure
get_line or by setting SERVEROUTPUT ON in Oracle. For
example, suppose we create the following stored procedure:

CREATE PROCEDURE Salary_Statement (payroll OUT
NUMBER) AS

CURSOR c1 IS SELECT salary, empage FROM emp;
BEGIN

payroll := 0;
FOR t1rec IN c1 LOOP

t1rec.empage := NVL(t1rec.empage, 0);
payroll := payroll + t1rec.salary + t1rec.empage;

END LOOP;
/* Display debug info. */
dbms_output.put_line('Value of payroll: ' ||

TO_CHAR(payroll));
END;
/

When we issue the following commands, Oracle displays the
value assigned by the procedure to parameter payroll:

SQL> SET SERVEROUTPUT ON
SQL> VARIABLE num NUMBER
SQL> CALL Salary_Statement (:num);

Value of payroll: 4523

 DBMS_PIPE Package :
Package DBMS_PIPE allows different sessions to

communicate over named pipes. (A pipe is an area of memory
used by one process to pass information to another.) We can use

235

the procedures pack_message and send_message to pack a
message into a pipe, send it to another session in the same
instance.

At the other end of the pipe, we can use the procedures
receive_message and unpack_message to receive and unpack
(read) the message. Named pipes are useful in many ways. For
example, we can write routines in C that allow external programs to
collect information, then send it through pipes to procedures stored
in an Oracle database.

 UTL_FILE Package :
Package UTL_FILE allows our PL/SQL programs to read

and write operating system (OS) text files. It provides a restricted
version of standard OS stream file I/O, including open, put, get, and
close operations.

When we want to read or write a text file, we call the function
fopen, which returns a file handle for use in subsequent procedure
calls. For example, the procedure put_line writes a text string and
line terminator to an open file, and the procedure get_line reads a
line of text from an open file into an output buffer.

 UTL_HTTP Package :
Package UTL_HTTP allows our PL/SQL programs to make

hypertext transfer protocol (HTTP) callouts. It can retrieve data from
the Internet or call Oracle Web Server cartridges. The package has
two entry points, each of which accepts a URL (uniform resource
locator) string, contacts the specified site and returns the requested
data, which is usually in hypertext markup language (HTML) format.

13.11 POINTS TO PONDER FOR WRITING
PACKAGES:

When we are writing the packages; we have to keep them as
general as possible so they can be reused in future applications.
We have to avoid writing packages that duplicate some feature
already provided by Oracle. Package specs reflect the design of
our application. So, we have to define them before the package
bodies. Place in a spec only the types, items, and subprograms that
must be visible to users of the package. By this, other developers
cannot misuse the package by basing their code on irrelevant
implementation details.

To reduce the need for recompiling when code is changed,
place as few items as possible in a package spec. Changes to a
package body do not require Oracle to recompile dependent

236

procedures. However, changes to a package spec require Oracle to
recompile every stored subprogram that references the package.

Separating Cursor Specs and Bodies with Packages:
We can separate a cursor specification from its body for

placement in a package. That way, we can change the cursor body
without having to change the cursor spec. We code the cursor spec
in the package spec by using this syntax:

CURSOR cursor_name [(param1 [, param2]...)] RETURN
return_type;

In the following example, we use the %ROWTYPE attribute to
provide a record type that represents a row in the database table
employee

CREATE or replace PACKAGE emp_salary AS
CURSOR t1 RETURN employee%ROWTYPE; -- declare

cursor spec
END emp_salary;

/

CREATE or replace PACKAGE BODY emp_salary AS
CURSOR t1 RETURN employee%ROWTYPE IS

SELECT * FROM employee WHERE emp_sal > 43000;
-- define cursor body

END emp_ salary;
/

The cursor spec has no SELECT statement because the
RETURN clause specifies the data type of the return value.
However, the cursor body must have a SELECT statement and the
same RETURN clause as the cursor spec. Also, the number and
data types of items in the SELECT list and the RETURN clause
must match.

Packaged cursors increase flexibility. For example, we can
change the cursor body in the last example, without having to
change the cursor spec.

From a PL/SQL block or subprogram, we use dot notation to
reference a packaged cursor, as the following example shows:

DECLARE
emp_rec employee%ROWTYPE;

BEGIN
OPEN emp_salary.t1;
LOOP

237

FETCH emp_salary.t1 INTO emp_rec; /* Do more
processing here... */

EXIT WHEN emp_salary.t1%NOTFOUND;
END LOOP;
CLOSE emp_salary.t1;

END;
/

The scope of a packaged cursor is not limited to a PL/SQL
block. When we open a packaged cursor, it remains open until we
close or disconnect it from the session.

13.12 QUESTIONS:

1. What are packages in PL/SQL? What are the advantages of
Packages?

2. Explain the Components and specification of PL/SQL packages.

3. Give simple example of package specification and body
element.

4. Write short note on Data Dictionary and PL/SQL Source Code.

5. How to overload Subprograms in PL/SQL

6. Explain the PL/SQL package BODY with the example.

7. Explain some package features with example.

8. Explain STANDARD package in PL/SQL.

9. Elaborate use of following product specific packages.

 DBMS_ALERT

 DBMS_OUTPUT

 DBMS_PIPE

 UTL_FILE

 UTL_HTTP

10.What points should be taken in consideration for writing PL/SQL
packages?

11.How to separating Cursor Specs and Bodies from Packages?

Practice Questions:

12.Create a function that accepts emp_id and check if the emp_id
exits in dept table display a message employee present and if
not then display the message employee absent.

13.Create a package named myPack that will hold the function
created in above exercise. Write the package specification and
package body for the package myPack.

238

14.Write a PL/SQL block of code for a function which calculates
square of a number. Use IN OUT parameter.

15.Write a PL/SQL block of code for a procedure which displays
the information of a Student table. (Create Student table with
proper fields.)

16.Write a PL/SQL block of code for a procedure which displays
the message HELLO WORLD.

13.13 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani

(PHI) EEE edition

239

Unit - VI

14

DYNAMIC SQL

Unit Structure

14.1 Objectives

14.2 The Execution Flow of SQL

14.3 Execution Flow of SQL in PL/SQL Subprograms

14.4 Dynamic SQL

14.5 Dynamic Queries Execution :

14.6 Dynamically Executing a PL/SQL Block

14.7 Dynamic SQL Using Native Dynamic SQL

14.8 Using DBMS_SQL Package

14.9 Advantages of Native Dynamic SQL

14.10 Native Dynamic SQL is faster than DBMS_SQL

14.11 Advantages of the DBMS_SQL Package

14.12 Performing DML Using Dynamic SQL:

14.13 Use of Dynamic SQL in Different Languages:

14.14 Questions

14.15 Further Reading

14.1 OBJECTIVES

After completing this chapter, you will be able to:

 Understand the Execution Flow of SQL with PL SQL

 Understand Dynamically Executing a PL/SQL Block

 Understand to use DBMS_SQL Package

 Manage and use Advantages of Native Dynamic SQL

 Understand Performing DML Using Dynamic SQL

14.2 THE EXECUTION FLOW OF SQL

All SQL statements in the database go through various
stages. These stages are called as Execution flow of SQL:

240

 Parse: This stage is called as ‘pre-execution’. In this stage
the code is checked for “is this possible?” possibility
including syntax, object existence, privileges and so on.

 Bind: In this stage we are able to get the actual values of
any variables referenced in the statement

 Execute: In this stage we execute the statements in the SQL
code.

 Fetch: In this stage the obtained results are returned to the
user.

Some of the stages may not be relevant for all statements—
for example; the fetch phase is applicable to queries but not
DML. These stages can be appearing one by one or with
one another. Every time the statement is parsed. Binding of
values depends upon whether we are using the variables or
not. Every time it is necessary to use the variables in SQL
block. Execution stage happens every time. Fetch is also
depend of the code of block, not necessary execute every
time.

14.3 EXECUTION FLOW OF SQL IN PL/SQL
SUBPROGRAMS

• When a SQL statement is included in a PL/SQL subprogram,
the parse and bind phases are normally done at compile time,
i.e. when the procedure, function or package body is
CREATED.

• What if the text of the SQL statement is not known when the
procedure is created? How could the Oracle server parse it?

– It couldn’t.
– For example, suppose we want to DROP a table, but the

user will enter the table name at execution time:

CREATE PROCEDURE drop_tabl (tbl_nam VARCHAR2)
IS BEGIN

DROP TABLE tbl_nam; - - cannot be parsed
END;

/

14.4 DYNAMIC SQL:

In programming world the word Dynamic refers for runtime
execution. The Dynamic SQL is used to write programs that
mention SQL statements whose full text is not known until runtime.
The complete query or the procedure is evaluated only at the run
time, which gives results depending on the code. In this code some
the code may refer the code which is precompiled or may refer

241

some code which is not part of current code. Instead the static
SQL statements do not change from execution to execution. The
full code of static SQL statements is known at compilation, which
gives the following benefits:

 The total compilation checks that the necessary privileges
are already given to access the database objects.

 The total compilation verifies that the SQL statements
reference valid database objects.

The Static SQL execution is very much straight forward and
self explanatory. The result and performance of static SQL is
always good than dynamic SQL. Due to these advantages, we
should use dynamic SQL only when we cannot use static SQL to
achieve our results. The static SQL has limitations that can be
avoided with dynamic SQL. Sometimes we may not know the
complete code of the SQL statements that must be executed in a
PL/SQL procedure. Our program may accept user input that
defines the SQL statements to execute, or our program may need
to complete some processing to determine the correct course of
action. In such situation, use dynamic SQL.

For example, a duration calculating application in a data
warehouse environment may not know the exact table name until
runtime. These tables might be named according to the starting
month and year of the quarter, for example INV_01_1997,
INV_04_1997, INV_07_1997, INV_10_1997, INV_01_1998, and so
on. We can use dynamic SQL in our duration calculating application
to specify the table name at runtime.

When we want to run a complex query with a user-selectable
sort order then we can use Dynamic SQL. Instead of coding the
query twice, with different ORDER BY clauses, we can construct
the query dynamically to include a specified ORDER BY clause.

14.5 DYNAMIC QUERIES EXECUTION:

While dealing with traditional database management system,
there are several situations occur when we need to use dynamic
SQL. We can use dynamic SQL to create applications that execute
dynamic queries, whose full code is not known until runtime. Many
types of programs need to use dynamic queries, including:

 The Code or Programs that allow users to input or choose
query search or sorting criteria at runtime.

 The Code or Programs that allow users to input or choose
optimizer hints at run time.

 The Code or Programs that query a database where the data
definitions of tables are constantly changing.

242

 The Code or Programs that query a database where new
tables are often created.

14.6 DYNAMICALLY EXECUTING A PL/SQL BLOCK :

There are multiple ways of executing normal PLSQL block.
We can use the EXECUTE IMMEDIATE statement to execute
anonymous PL/SQL blocks. We can add flexibility by constructing
the block contents at runtime.

For example, suppose we want to write a program that takes
an emp number and sends to a handler for the event. The name of
the handler is in the form MY_EVENT_HANDLER_emp_number,
where emp_number is the number of the employee. One approach
is to implement the sender as a switch statement, where the code
handles each event by making a static call to its appropriate
handler. This code is not very extensible because the dispatcher
code must be updated whenever a handler for a new employee is
added.

CREATE OR REPLACE PROCEDURE my_emp_handler_1(e
number) AS BEGIN

-- Code to process the event
RETURN;

END;
/

CREATE OR REPLACE PROCEDURE my_emp_handler_2(e
number) AS BEGIN

-- Code to process the event
RETURN;

END;
/

CREATE OR REPLACE PROCEDURE my_emp_handler_3(e
number) AS BEGIN

-- Code to process the event
RETURN;

END;
/

SQL> CREATE OR REPLACE PROCEDURE
my_emp_adder (emp number, e number)

IS
2 BEGIN
3 IF (emp = 1) THEN
4 my_emp_handler_1 (e);
5 ELSIF (emp = 2) THEN

243

6 my_emp_handler_2(e);
7 ELSIF (emp = 3) THEN
8 my_emp_handler_3(e);
9 END IF;

10 END;
11 /

Otherwise using native dynamic SQL, we can write a
smaller, more flexible event dispatcher similar to the following:

SQL> CREATE OR REPLACE PROCEDURE my_emp_adder (emp
NUMBER, e NUMBER)

2 IS BEGIN
3 EXECUTE IMMEDIATE
4 'BEGIN
5 my_emp_handler_' || to_char(e) || '(:1);
6 END;'
7 USING e;
8 END;
9 /

Procedure created.

14.7 DYNAMIC SQL USING NATIVE DYNAMIC SQL

In this situation we are able to decide how to perform the
following operations using native dynamic SQL:

 How and when to Execute DDL and DML operations.
 How and when to Execute single row and multiple row

queries.

The database in this scenario is a company's human
resources database (named emp) with the following data model:
A master table named offices contains the list of all company
locations. The offices table has the following definition:

Column Name Null? Type
LOCATION NOT_NULL VARCHAR2(200)

Multiple emp_location tables contain the employee
information, where location is the name of city where the office is
located. For example, a table named emp_delhi contains employee
information for the company's Delhi office, while a table named
emp_nagpur contains employee information for the company's
Nagpur office.

244

Each emp_location table has the following definition:

Column Name Null? Type
EMP_NO NOT_NULL NUMBER(4)
E_NAME NOT_NULL VARCHAR2(10)
JOB NOT_NULL VARCHAR2(9)
SAL NOT_NULL NUMBER(7,2)
DEPT_NO NOT_NULL NUMBER(2)

The following sections describe various native dynamic SQL
operations that can be performed on the data in the employee
database.

Note: To execute following examples we need to create the proper
database and table structure in advance otherwise the code will
give compilation error.

 DML Operation Using Native Dynamic SQL

The following native dynamic SQL procedure gives an increment to
all employees with a particular job title:

SQL> CREATE OR REPLACE PROCEDURE

salary_incr (incr_percent NUMBER, job VARCHAR2)

IS

2 TYPE loc_array_type IS

3 TABLE OF VARCHAR2(40) INDEX BY binary_integer;

4 dml_str VARCHAR2(200);

5 loc_array loc_array_type;

6 BEGIN -- fetch the list of office locations

7 SELECT location BULK COLLECT INTO loc_array

8 FROM offices; -- for each location, give a raise to
employees with the given 'job'

9 FOR i IN loc_array.first..loc_array.last LOOP

10 dml_str := 'UPDATE emp_' || loc_array(i) || ' SET sal = sal
* (1+(:incr_percent/100))'

11 || ' WHERE job = :job_title';

12 EXECUTE IMMEDIATE dml_str USING incr_percent, job;

13 END LOOP

14 END;

15 /

SHOW ERRORS; -- To view the syntax error if any

245

 DDL Operation Using Native Dynamic SQL
The EXECUTE IMMEDIATE statement can perform DDL
operations. For example, the following procedure adds an office
location.

SQL> CREATE OR REPLACE PROCEDURE add_loc (loc
VARCHAR2) IS

2 BEGIN
3 -- insert new location in master table
4 INSERT INTO offices VALUES (loc); -- create an

employee information table
5 EXECUTE IMMEDIATE
6 'CREATE TABLE ' || 'emp_' || loc ||
7 '(
8 empno NUMBER(4) NOT NULL,
9 ename VARCHAR2(10),

10 job VARCHAR2(9),
11 sal NUMBER(7,2),
12 deptno NUMBER(2)
13)';
14 END;
15 /

The following procedure deletes an office location:

SQL> CREATE OR REPLACE PROCEDURE drop_loc (loc VARCHAR2)
IS

2 BEGIN
3 -- delete the employee table for location 'loc'
4 EXECUTE IMMEDIATE 'DROP TABLE ' || 'emp_' || loc; -- remove

location from master table
5 DELETE FROM offices WHERE location = loc;
6 END;
7 /

 Single-Row Query Using Native Dynamic SQL
The EXECUTE IMMEDIATE statement can perform dynamic

single-row queries. We can specify bind variables in the USING
clause and fetch the resulting row into the target specified in the
INTO clause of the statement.
The following function retrieves the number of employees at a
particular location performing a specified job:

SQL> CREATE OR REPLACE FUNCTION get_num_of_emp (loc
VARCHAR2, job VARCHAR2)

2 RETURN NUMBER IS
3 query_str VARCHAR2(1000);
4 num_of_emp NUMBER;
5 BEGIN
6 query_str := 'SELECT COUNT(*) FROM '
7 || ' emp_' || loc
8 || ' WHERE job = :job_title';
9 EXECUTE IMMEDIATE query_str

246

10 INTO num_of_emp
11 USING job;
12 RETURN num_of_emp;
13 END;
14 /

 Multiple-Row Query Using Native Dynamic SQL

The OPEN-FOR, FETCH, and CLOSE statements can
perform dynamic multiple-row queries. For example, the following
procedure lists all of the employees with a particular job at a
specified location

SQL> CREATE OR REPLACE PROCEDURE list_emp(loc VARCHAR2,
job VARCHAR2) IS

2 TYPE cur_typ IS REF CURSOR;
3 c cur_typ;
4 query_str VARCHAR2(1000);
5 emp_name VARCHAR2(20);
6 emp_num NUMBER;
7 BEGIN
8 query_str := 'SELECT ename, empno FROM emp_' || loc
9 || ' WHERE job = :job_title'; -- find employees who perform the

specified job
10 OPEN c FOR query_str USING job;
11 LOOP
12 FETCH c INTO emp_name, emp_num;
13 EXIT WHEN c%NOTFOUND; -- processing goes here
14 END LOOP;
15 CLOSE c;
16 END;
17 /

14.8 USING DBMS_SQL PACKAGE

This is the standard SQL package provided by the oracle to
Database programmer to bring flexibility in the coding. The
DBMS_SQL package gives access to dynamic SQL and dynamic
PL/SQL from within PL/SQL programs. "Dynamic" means that the
SQL statements we execute with this package are not prewritten
into our programs. They are, constructed at runtime as character
strings and then passed to the SQL engine for execution.

The DBMS_SQL package provides an entity called a SQL
cursor number. Because the SQL cursor number is a PL/SQL
integer, we can pass it across call boundaries and store it. We can
also use the SQL cursor number to obtain information about the
SQL statement that we are executing.

247

We must use the DBMS_SQL package to execute a dynamic
SQL statement when we don't know either of the following until run-
time:

 SELECT list
 What placeholders in a SELECT or DML statement must be

bound

In the following situations, we must use native dynamic SQL
instead of the DBMS_SQL package:

 The dynamic SQL statement retrieves rows into records.
We want to use the SQL cursor attribute %FOUND, %ISOPEN,
%NOTFOUND, or %ROWCOUNT after issuing a dynamic SQL
statement that is an INSERT, UPDATE, DELETE, or single-row SELECT

statement.

When we need both the DBMS_SQL package and native dynamic
SQL, we can switch between them, using the following:

 DBMS_SQL.TO_REFCURSOR Function
 DBMS_SQL.TO_CURSOR_NUMBER Function

Note:
We can invoke DBMS_SQL subprograms remotely which improves

ease of coding and realization of the result from any location.

 When to use Native Dynamic SQL and the
DBMS_SQL Package:

The Oracle provides two methods for using dynamic SQL
within PL/SQL: native dynamic SQL and the DBMS_SQL package.
Native dynamic SQL allows us to place dynamic SQL statements
directly into PL/SQL code. These dynamic statements include DML
statements (including queries), PL/SQL anonymous blocks, DDL
statements, transaction control statements, and session control
statements.

To process most native dynamic SQL statements, we use
the EXECUTE IMMEDIATE statement. To process a SELECT
statement, use OPEN-FOR, FETCH, and CLOSE statements.

The DBMS_SQL package is a PL/SQL library that offers an
API (Application programming Interface) to execute SQL
statements dynamically. It has procedures to open a cursor, parse
a cursor; supply binds, and so on. Programs that use the
DBMS_SQL package make calls to this package to perform
dynamic SQL operations.

248

14.9 ADVANTAGES OF NATIVE DYNAMIC SQL

Native dynamic SQL has following advantages over the
DBMS_SQL package:

 Very easy to Use

Because native dynamic SQL is integrated with SQL, we can
use it in the same way that we use static SQL within PL/SQL code.
Native dynamic SQL code is typically more compact and readable
than equivalent code that uses the DBMS_SQL package.

With the DBMS_SQL package we must call many
procedures and functions in a strict sequence, making even simple
operations require a lot of code. We can avoid this complexity by
using native dynamic SQL instead.

Following table demonstrates the difference in the amount of
code required to perform the same operation using the DBMS_SQL
package and native dynamic SQL.

Example of Code Comparison of DBMS_SQL Package and Native
Dynamic SQL

1 Code of DBMS_SQL Package
SQL> CREATE PROCEDURE insertion (tname VARCHAR2,
dno NUMBER, dname VARCHAR2,

2 location VARCHAR2) IS
3 mycur INTEGER; stmt_str VARCHAR2(200);
4 rows_processed BINARY_INTEGER;
5
6 BEGIN
7 stmt_str := 'INSERT INTO ' || tname || ' VALUES (:deptno,

:dname, :loc)';
8
9 mycur := dbms_sql.open_cursor; -- opening cursor
10 -- parse cursor
11 dbms_sql.parse(mycur, stmt_str, dbms_sql.native);
12 -- supply binds
13 dbms_sql.bind_variable (mycur, ':deptno', dno);
14 dbms_sql.bind_variable (mycur, ':dname', dname);
15 dbms_sql.bind_variable (mycur, ':loc', location);
16 -- execute cursor
17 rows_processed := dbms_sql.execute(mycur);
18 -- close cursor
19 dbms_sql.close_cursor(mycur);
20 END;
21 /

249

2. Code of Native Dynamic SQL

SQL> CREATE PROCEDURE insertion1
(tname VARCHAR2, dno NUMBER, dname VARCHAR2,

2 location VARCHAR2) IS
3 stmt_str VARCHAR2(200);
4
5 BEGIN
6 stmt_str := 'INSERT INTO ' || tname || ' values (:deptno,

:dname, :loc)';
7
8 EXECUTE IMMEDIATE stmt_str
9 USING

10 dno, dname, location;
11
12 END;
13 /

Procedure created.

SQL> SHOW ERRORS;
No errors.

14.10 EXECUTION SPEED OF NATIVE DYNAMIC SQL
IS FASTER THAN DBMS_SQL:

The Native dynamic SQL in PL/SQL performs comparably to
the performance of static SQL, because the PL/SQL interpreter has
built-in support for it. Programs that use native dynamic SQL are
much faster than programs that use the DBMS_SQL package.
Typically, native dynamic SQL statements perform 1.5 to 3 times
better than equivalent DBMS_SQL calls. Sometimes our
performance gains may vary depending on our application.

Native dynamic SQL bundles the statement preparation,
binding, and execution steps into a single operation, which
minimizes the data copying and procedure call overhead and
improves performance.

The DBMS_SQL package is based on a procedural API and
incurs high procedure call and data copy overhead. Each time we
bind a variable, the DBMS_SQL package copies the PL/SQL bind
variable into its space used during execution. Each time we
execute a fetch, the data is copied into the space managed by the
DBMS_SQL package and then the fetched data is copied, one
column at a time, into the appropriate PL/SQL variables, resulting in
substantial overhead.

250

14.11 ADVANTAGES OF THE DBMS_SQL PACKAGE

The DBMS_SQL package provides the following advantages over
native dynamic SQL:

1. We can Reuse SQL Statements using DBMS_SQL
The PARSE procedure in the DBMS_SQL package parses a

SQL statement once. After the initial parsing, we can use the
statement multiple times with different sets of bind arguments.

Native dynamic SQL prepares a SQL statement each time
the statement is used, which typically involves parsing,
optimization, and plan generation. Although the extra prepare
operations incur a small performance penalty, the slowdown is
typically outweighed by the performance benefits of native dynamic
SQL.

2. Client-Side Program supports DBMS_SQL Package:
The DBMS_SQL package is supported in client-side

programs, but native dynamic SQL is not. Every call to the
DBMS_SQL package from the client-side program translates to a
PL/SQL remote procedure call (RPC); these calls occur when we
need to bind a variable, define a variable, or execute a statement.

3. Supports Multiple Row Updates and Deletes with a
RETURNING Clause

The DBMS_SQL package supports statements with a
RETURNING clause that update or delete multiple rows. Native
dynamic SQL only supports a RETURNING clause if a single row is
returned.

4. It Supports DESCRIBE
The DESCRIBE_COLUMNS procedure in the DBMS_SQL

package can be used to describe the columns for a cursor opened
and parsed through DBMS_SQL. This feature is similar to the
DESCRIBE command in SQL*Plus. Native dynamic SQL does not
have a DESCRIBE facility.

5. Supports SQL Statements Larger than 32KB
The DBMS_SQL package supports SQL statements larger

than 32KB; native dynamic SQL does not.

14.12 PERFORMING DML USING DYNAMIC SQL:

The following example includes a dynamic INSERT statement for a
table with three columns:

251

query := 'INSERT INTO dept_new VALUES (:dept_no,
:dept_name, :loc)';

This example inserts a new row for which the column values
are in the PL/SQL variables dept_no, dept_name, and location.
Table shows sample code that accomplishes this DML operation
using the DBMS_SQL package and native dynamic SQL.

Table DML Operation Using the DBMS_SQL Package and Native
Dynamic SQL

1. Code of DBMS_SQL DML Operation

SQL> DECLARE
2 stmt_str VARCHAR2(350); my_cur NUMBER;
3 deptid NUMBER := 101; deptname VARCHAR2(20);
4 location VARCHAR2(20);myresources VARCHAR2(20);

rows_processed NUMBER;
5 BEGIN
6 stmt_str := 'INSERT INTO departments VALUES(:did,

:dname,

:location,:resources)';
7 my_cur := DBMS_SQL.OPEN_CURSOR;
8 DBMS_SQL.PARSE(my_cur, stmt_str,

DBMS_SQL.NATIVE);
9 -- supply binds

10 DBMS_SQL.BIND_VARIABLE (my_cur, ':did',
deptid);
11 DBMS_SQL.BIND_VARIABLE (my_cur, ':dname',
deptname);
12 DBMS_SQL.BIND_VARIABLE (my_cur, ':location',
location);
13 DBMS_SQL.BIND_VARIABLE (my_cur, ':resources',
myresources);
14
15 rows_processed := dbms_sql.execute(my_cur);
16 -- execute
17 DBMS_SQL.CLOSE_CURSOR(my_cur); -- close
18 END;
19 /

2. Code of Native Dynamic SQL DML Operation:

SQL> DECLARE
2 stmt_str VARCHAR2(350); deptid NUMBER := 102;
3 deptname VARCHAR2(20); location VARCHAR2(20);

4 myresource VARCHAR2(20);

5 BEGIN

252

6 stmt_str := 'INSERT INTO departments VALUES
7 (:did, :dname, :location,:resources)';
8 EXECUTE IMMEDIATE stmt_str
9 USING deptid, deptname, location ,myresource;

10 END;
11 /

14.13 USE OF DYNAMIC SQL DIFFERENT
LANGUAGES:

The dynamic SQL is also supported in various database
languages with their language specifications. We can call dynamic
SQL from other languages as:

 If we use C/C++, we can call dynamic SQL with the Oracle
Call Interface (OCI), or we can use the Pro*C/C++ pre-
compiler to add dynamic SQL extensions to our C code.

 If we use COBOL, we can use the Pro*COBOL pre-compiler
to add dynamic SQL extensions to our COBOL code.

 If we use Java, we can develop applications that use
dynamic SQL with JDBC.

If we have an application that uses OCI, Pro*C/C++, or
Pro*COBOL to execute dynamic SQL, we should consider
switching to native dynamic SQL inside PL/SQL stored procedures
and functions. The network round-trips required to perform dynamic
SQL operations from client-side applications might decrease
performance. Stored procedures can reside on the server,
eliminating the network overhead. We can call the PL/SQL stored
procedures and stored functions from the OCI, Pro*C/C++, or
Pro*COBOL application.

14.14 QUESTIONS

1. State the execution flow of SQL in PL/SQL Subprograms.

2. How to execute PL/SQL Block Dynamically?

3. Write short note on Dynamic SQL.

4. How to execute Dynamic queries?

5. What is Native Dynamic SQL?

6. Write short note on DBMS_SQL Package.

7. State the Advantages of Native Dynamic SQL.

8. State the Advantages of DBMS_SQL Package.

9. Where we can use Dynamic SQL other than PLSQL?

253

Practice Questions:

10.Write a Simple example for DML Operation Using Native
Dynamic SQL.

11.Write a Simple example for DDL Operation Using Native
Dynamic SQL.

12.Write a Simple example for Multiple-Row Query Using Native
Dynamic SQL.

13.Use the DBMS_SQL package in the above examples.

14.15 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani

(PHI) EEE edition

254

15

TRIGGERS

Unit Structure

15.1 Objectives

15.2 Defining a Trigger :

15.3 Inside the Triggers

15.4 The Database Triggers & Application Triggers

15.5 Classification of PL/SQL Triggers:

15.6 Difference between BEFORE &. AFTER Triggers

15.7 Execution Sequence of PL/SQL Trigger

15.8 Difference between Statement Level and Row Level triggers

15.9 Building a DML Row Level Trigger

15.10 DDL Trigger creation:

15.11 Calling a Procedure in a Trigger Body:

15.12 Building a Database Event Trigger:

15.13 Creation of a SCHEMA Trigger:

15.14 Identifiers (OLD and NEW):

15.15 INSTEAD OF Triggers (View Triggers):

15.16 Listing of Trigger Information:

15.17 Altering a Trigger:

15.18 Knowing Information about Triggers:

15.19 CYCLIC CASCADING in a TRIGGER

15.20 Boundaries on Trigger Conditions:

15.21 Trigger Exceptions:

15.22 Privileges Required to Use Triggers

15.23 Questions

15.24 Further Reading

15.1 OBJECTIVES

After completing this chapter, you will be able to:

 Understand the Fundamentals of Triggers

 Create and use Triggers

255

 Understand the types of Triggers

 Understand the Execution Hierarchy of PL/SQL Trigger

 Creating DML and DDL Triggers

 View , Alter and Drop the Triggers

 Understand the Cyclic Cascading in a Triggers

 Understand the Privileges Required to Use Triggers

15.2 DEFINING A TRIGGER:

The triggers play an important role while validating the SQL
and PLSQL queries on automatic basis depending on the particular
condition. It executes or fired like a definite event every time. A
trigger can be defined as automatic code execution on a particular
event of a database. A trigger is a PL/SQL block structure or a
subprogram which is fired or executed when a DML statements like
Insert, Delete, Update is executed on a database table. A trigger is
triggered automatically at predefined timing and event, when an
associated DML statement is executed. Triggers are physically
stored in database.

A trigger stored in the database can include SQL and
PL/SQL or Java statements to run as a unit and can invoke stored
procedures. However, procedures and triggers differ in the way that
they are invoked. A procedure is explicitly run by a user,
application, or trigger. Triggers are implicitly fired by Oracle when a
triggering event occurs, no matter which user is connected or which
application is being used. Triggers are useful in achieving security
and auditing. It also maintains data integrity and referential integrity.

15.3 INSIDE THE TRIGGERS

The triggers give the dynamic approach to our SQL script.
Before we create and use the trigger, the user SYS must run a SQL
script commonly called DBMSSTDX.SQL. The proper name and
location of this script depend on our operating system. Before
starting with the triggers we must consider following points.

 We must have the CREATE TRIGGER system privilege, to
create a trigger in our own schema on a table.

 To create a trigger in any schema on a table in any schema,
or on another user's schema (schema. SCHEMA), we must
have the CREATE ANY TRIGGER system privilege.

 To create a trigger on DATABASE, we must have the
ADMINISTER DATABASE TRIGGER system privilege.

256

If the trigger issues SQL statements or calls procedures or
functions, then the owner of the trigger must have the privileges
necessary to perform these operations. These privileges must be
granted directly to the owner rather than acquired through roles.
In short we must have maximum privileges to deal with the triggers.

15.4 THE DATABASE TRIGGERS & APPLICATION
TRIGGERS:

There are various types of triggers. Triggers can be
categorized as Database triggers and Application triggers on the
basis of scope of usage of triggers. The Database triggers are
activated on any event occurring in the database, while application
trigger are restricted to an application. Database triggers can be
created on top of table, view, schema or database. Timings for
table or view can be before and after a DML operation, while those
on schema and database
can be logging in and log off.

A. Triggers with DML:

The following are the three criteria which must be kept in mind
before creating and using the DML trigger.

1. There can be three possible DML actions on data i.e. INSERT,
UPDATE or DELETE. These are events for the DML triggers.

2. A simultaneous action can be performed either before or after
an event. This serves as timing for DML triggers.

3. Whether the trigger action must be at DML statement level or at
affected row level, decides the level of a trigger.

After the timing, event and level are set, trigger body must be
created to implement the triggering logic.

Important Note: The size of a trigger cannot be greater than 32
KB.

Syntax of Triggers:
The Syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF}
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF column_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]

257

[FOR EACH ROW]
WHEN (condition)
BEGIN
--- The SQL Code // application logic goes here
END;
/

Understanding the Syntax:

 CREATE [OR REPLACE] TRIGGER trigger_name :- This line
creates a trigger with the given name or overwrites an existing
trigger with the same name. It is a compulsory part of syntax.

 {BEFORE | AFTER | INSTEAD OF } - This line indicates at
what time the trigger should get fired. i.e. For example: before or
after updating a table. INSTEAD OF is used to create a trigger
on a view. Before and After cannot be used to create a trigger
on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE} - This line
determines the triggering event. More than one triggering events
can be used together separated by OR keyword. The trigger
gets fired at all the specified triggering event.

 [OF col_name] - This statement is used with update triggers.
This statement is used when we want to trigger an event only
when a specific column is updated.

 [ON table_name] - This statement identifies the name of the
table or view to which the trigger is associated.

 [REFERENCING OLD AS o NEW AS n] - This statement is
used to reference the old and new values of the data being
changed. By default, we reference the values as
:old.column_name or :new.column_name. The reference names
can also be changed from old (or new) to any other user-defined
name. We cannot reference old values when inserting a record,
or new values when deleting a record, because they do not
exist.

 [FOR EACH ROW] - This statement is used to determine
whether a trigger must fire when each row gets affected (i.e. a
Row Level Trigger) or just once when the entire SQL statement
is executed(i.e.statement level Trigger).

 WHEN (condition) - This statement is valid only for row level
triggers. The trigger is fired only for rows that satisfy the
condition specified.

For Example: If we want to avoid the duplicate entry of the field
other than primary field then we can create trigger to check that
particular entry. The price of a product changes constantly. It is
important to maintain the history of the prices of the products. We

258

can create a trigger to update the 'price_trace' table when the price
of the product is updated in the 'product' table.

1) Create the 'product' table and 'price_trace ' table

SQL> CREATE TABLE price_trace
16 (product_id number(5), product_name varchar2(32),
17 supplier_name varchar2(32),
4 unit_price number(7,2));

Table created.

SQL> CREATE TABLE product (product_id number(5),
product_name varchar2(32),

supplier_name varchar2(32), unit_price number(7,2)
);

Table created.

SQL> insert into product values(1312,'Wooden_Door','Galaxy',950);

1 row created.

SQL> insert into product values(1313,'Plastic_Door','Tanmay',1950);

1 row created.

SQL> insert into product values(1314,'Metal_Door','Sun',11450);

1 row created.

2) Create the my_price_trace trigger and execute it.

SQL> CREATE or REPLACE TRIGGER my_price_trace
2 BEFORE UPDATE OF unit_price
3 ON product
4 FOR EACH ROW
5 BEGIN
6 INSERT INTO price_trace
7 VALUES (:old.product_id, :old.product_name,

:old.supplier_name, :old.unit_price);
8 END;
9 /

Trigger created.

3) Lets update the price of a product.
SQL> UPDATE product SET unit_price = 900 WHERE

product_id = 1312;
1 row updated.

259

Once the above update query is executed, the trigger fires
and updates the 'price_trace' table. We can view the result using
following statements.

SQL> select * from price_trace;

PRODUCT_ID PRODUCT_NAME SUPPLIER_NAME UNIT_PRICE
-------------------- -------------------------- ------------------------ ------------------

1312 Wooden_Door Galaxy 950

4) If we ROLLBACK the transaction before committing to the
database, the data inserted to the table is also rolled back.

15.5 CLASSIFICATION OF PL/SQL TRIGGERS:

There are two types of triggers based on the level it is triggered.

1) Trigger on Row level: - The Row level trigger fires automatically
when any other query makes any change in the any single table
row. The row level trigger is fired each time the table is affected by
the triggering statement. For example, if an UPDATE statement
updates multiple rows of a table, a row trigger is fired once for each
row affected by the UPDATE statement. If a triggering statement
affects no rows, a row trigger is not executed at all. Row triggers
are useful if the code in the trigger action depends on data provided
by the triggering statement or rows that are affected.

2) Trigger on Statement level: - The statement trigger is fired
once on behalf of the triggering Statement, regardless of the
number of rows in the table that the triggering statement affects
(even if no rows are affected). For example, if a DELETE statement
deletes several rows from a table, a statement-level DELETE
trigger is fired only once, regardless of how many rows are deleted
from the table.

Statement triggers are useful if the code in the trigger action
does not depend on the data provided by the triggering statement
or the rows affected. For example, if a trigger makes a complex
security check on the current time or user, or if a trigger generates
a single audit record based on the type of triggering statement, a
statement trigger is used.

15.6 DIFFERENCE BETWEEN BEFORE & AFTER
TRIGGERS:

The Before and After triggers are related with the timing of
firing them or we can say that when to execute them. When
defining a trigger, we can specify the trigger timing. Means, we can

260

specify whether the trigger action is to be executed before or after
the triggering statement. BEFORE and AFTER apply to both
statement and row triggers.

1) BEFORE Triggers: The BEFORE triggers executes the
trigger action before the triggering statement. The BEFORE triggers
are used when the trigger action should determine whether the
triggering statement should be allowed to complete. By using a
BEFORE trigger for this purpose, we can eliminate unnecessary
processing of the triggering statement and its ultimate rollback in
cases where an exception is raised in the trigger action. BEFORE
triggers are also used to derive specific column values before
completing a triggering INSERT or UPDATE statement.

2) AFTER Triggers: The AFTER triggers execute the trigger
action after the triggering statement is executed. The AFTER
triggers are used when we want the triggering statement to
complete before executing the trigger action. If a BEFORE trigger is
already present, an AFTER trigger can perform different actions on
the same triggering statement.

We can have multiple triggers of the same type for the same
statement for any given table. For example we may have two
BEFORE STATEMENT triggers for UPDATE statements on the
EMPLOYEE table. Multiple triggers of the same type permit
modular installation of applications that have triggers on the same
tables. We can design our own AFTER ROW trigger in addition to
the Oracle-defined AFTER ROW trigger.

We can create as many triggers of the preceding different
types as we need for each type of DML statement (INSERT,
UPDATE, or DELETE). For example, suppose we have a table
Payment, and we want to know when the table is being accessed
and the types of queries being issued.

15.7 EXECUTION SEQUENCE OF PL/SQL TRIGGER:

There are some rules of execution of triggers. The following
sequence is followed when a trigger is fired.
1) The BEFORE statement trigger executes / fires first.
2) Next BEFORE row level trigger fires, once for each row affected.
3) Then AFTER row level trigger fires once for each affected row.
These events will alternates between BEFORE and AFTER row
level triggers.

4) Finally the AFTER statement level trigger fires.

261

For example let’s create a table 'product_chk' which we can use to
store messages when triggers are fired.

SQL> CREATE TABLE product_chk (Message varchar2(50),
Current_Date date);
Table created.

Let's create a BEFORE and AFTER statement and row level
triggers for the product table.

1) BEFORE UPDATE, Statement Level: This trigger will insert a
record into the table 'product_chk' before a SQL update statement
is executed, at the statement level.

SQL> CREATE or REPLACE TRIGGER
Before_Update_product

2 BEFORE
3 UPDATE ON product
4 Begin
5 INSERT INTO product_chk
6 Values('Before update, statement level trigger', sysdate);
7 END;
8 /

Trigger created.

2) BEFORE UPDATE, Row Level: This trigger will insert a record
into the table 'product_chk' before each row is updated.

SQL> CREATE or REPLACE TRIGGER
Before_Upddate_Row_product

2 BEFORE
3 UPDATE ON product
4 FOR EACH ROW
5 BEGIN
6 INSERT INTO product_chk
7 Values('Before update row level trigger',sysdate);
8 END;
9 /

Trigger created.

3) AFTER UPDATE, Statement Level: This trigger will insert a
record into the table 'product_chk' after a SQL update statement is
executed, at the statement level.

SQL> CREATE or REPLACE TRIGGER
After_Update_product

2 AFTER

262

3 UPDATE ON product
4 BEGIN
5 INSERT INTO product_chk
6 Values('After update, statement level trigger', sysdate);
7 End;
8 /

Trigger created.

4) AFTER UPDATE, Row Level: This trigger will insert a record
into the table 'product_chk' after each row is updated.

SQL> CREATE or REPLACE TRIGGER
After_Update_Row_product

2 AFTER
3 insert On product
4 FOR EACH ROW
5 BEGIN
6 INSERT INTO product_chk
7 Values('After update, Row level trigger',sysdate);
8 END;
9 /

Trigger created.

Now let’s execute a update statement on table item.

SQL> UPDATE product SET unit_price = 850
2 WHERE product_id in (1312,1314);

2 rows updated.

We can check the data in 'product_chk' table to see the order in
which the trigger is fired.

SQL> SELECT * FROM product_chk;

Output:

MESSAGE CURRENT_DATE
-- ----------------------
Before update, statement level 29-AUG-12
Before update row level trigger 29- AUG -12
Before update row level trigger 29- AUG -12
After update, statement level triggers 29- AUG -12

The above result shows 'before update' and 'after update'
row level events have occurred twice, since two records were
updated. But 'before update' and 'after update' statement level
events are fired only once per SQL statement.

263

The above rules apply similarly for INSERT and DELETE
statements.

15.8 DIFFERENCE BETWEEN STATEMENT LEVEL
AND ROW LEVEL TRIGGERS :

A) Statement-Level Triggers: These are the default triggers.
These are fired only once when the triggering event occurs. These
triggers does not have any effect that any row affected or not by the
update or insert statement.

B) Row-Level Triggers: To fire these types of triggers FOR EACH
ROW specification is required. These triggers are fired only when
the rows affected by an event. If no rows are affected, it will not fire.

(IMG Ref www.club-oracle.com)

Creating a DML Statement Trigger
we can create a statement level trigger as below. The trigger

fires before the INSERT action on EMPLOYEE table. As per the
trigger action, it inserts a record in Employee Log table, with current
date, action and remarks.

SQL> create table employee(empid int,empname char(20),
2 empsal number(7,2), jobtitle char(100));

Table created.

264

SQL> create table trace_emp(empid int,status char(2),
2 actdate date,act char(20),remark char(100));

Table created.

SQL> CREATE OR REPLACE TRIGGER trace_employee
2 BEFORE INSERT ON employee
3 BEGIN
4 INSERT INTO trace_emp(empid, status, actdate, act, remark)
5 VALUES(2, 'P', SYSDATE, 'CREATE', 'you are with the

triggers');
6 END;
7 /

Trigger created.

SQL> INSERT INTO EMPLOYEE (empid, empname, empsal,
jobtitle)

2 VALUES(4, 'SONALI', 34500, 'manager');

1 row created.

SQL> SELECT * FROM trace_emp;

EMPID ST ACTDATE ACT REMARK
---------- ------ ---------------- ---------- ---

2 P 29-AUG-12 CREATE you are with the triggers

Conditional Predicates to Detect the Trigger DML operation:
We can use conditional predicate with the DML trigger

operations. For a specific timing, if all the events have to be tested
instead of creating three different DML triggers, oracle provides
DML predicates to be used in trigger body. The available predicates
can be INSERTING, UPDATING or DELETING. For example,
below trigger body shows the usage of DML predicates. Note the
event specification and handling.

CREATE OR REPLACE TRIGGER my_trigg_trace_ emp
BEFORE INSERT OR UPDATE OR DELETE ON employee
BEGIN

IF INSERTING THEN
…
ELSIF UPDATING THEN
…
ELSIF DELETING
…
END IF;

265

END;
/

Output>>TRIGGER created.

15.9 BUILDING A DML ROW LEVEL TRIGGER

The DML row level trigger EMPLOYEE_MEMBERSHIP deletes the
membership record for every employee record which gets deleted.

SQL> CREATE OR REPLACE TRIGGER
EMPLOYEE_MEMBERSHIP

2 BEFORE DELETE ON EMPLOYEE
3 BEGIN
4 FOR EACH ROW
5 DELETE FROM EMP_MEMBERSHIP
6 WHERE EMPID=:OLD.EMPID;
7 END;
8 /

Output>>TRIGGER created.

15.10 DDL TRIGGER CREATION:

Following example creates an AFTER statement trigger on any
DDL statement CREATE. Such a trigger can be used to audit the
creation of new data dictionary objects in our schema.

CREATE TRIGGER audit_db_field AFTER CREATE
ON SCHEMA pl/sql_block

15.11 CALLING A PROCEDURE IN A TRIGGER BODY:

In following example we could create the check_salary
trigger described in the preceding example by calling a procedure
instead of providing the trigger body in a PL/SQL block. Assume we
have defined a procedure check_salary in the hr schema, which
verifies that an employee's salary is in an appropriate range. Then
we could create the trigger check_salary as follows:

CREATE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF empsal, jobtitle ON
employees

FOR EACH ROW
WHEN (new. jobtitle <> 'DEVELOPER')
CALL check_salary(:new.jobtitle, :new.empsal,

:new.empname)

266

The procedure check_salary could be implemented in
PL/SQL, C, or Java. Also, we can specify: OLD values in the CALL
clause instead of: NEW values.

15.12 BUILDING A DATABASE EVENT TRIGGER:

Following example demonstrates the basic syntax for a
trigger to log all errors. The hypothetical PL/SQL block does some
special processing for a particular error (invalid logon, error number
1017). This trigger is an AFTER statement trigger, so it is fired after
an unsuccessful statement execution, such as unsuccessful logon.

CREATE TRIGGER errlog AFTER SERVERERROR ON
DATABASE

BEGIN
IF (IS_SERVERERROR (1017)) THEN

<special processing of logon error>
ELSE

<log error number>
END IF;

END;
/

15.13 CREATION OF A SCHEMA TRIGGER:

Following example creates a BEFORE statement trigger on the sample
schema hr. When a user connected as hr attempts to drop a database
object, the database fires the trigger before dropping the object.

CREATE OR REPLACE TRIGGER drop_resist_trigger
BEFORE DROP ON hr.SCHEMA
BEGIN

RAISE_APPLICATION_ERROR (num => -20000, msg =>
'not able to drop object');

END;
/

15.14 IDENTIFIERS (OLD AND NEW)

The OLD and NEW are identifiers which carry a record value
before and after the DML event. The record values can be referred
by prefixing a column value with the corresponding identifier.
Below table shows the OLD and NEW values within each triggering
event.

Event OLD value NEW value

INSERT NULL Current value

267

UPDATE Old value of record New value of record

DELETE
Record value before delete
operation

NULL

Example:
The trigger below archives an employee record if salary is
incremented by more than 2000. Note that the increment is
checked by the WHEN clause condition.

SQL> CREATE OR REPLACE sal_incr

2 BEFORE UPDATE OF empsal ON employee

3 FOR EACH ROW

4 WHEN(OLD.empsal - NEW.empsal > 2000)

5 BEGIN

6 INSERT INTO EMP_ARCHIVE (id, empid, OLD_SAL,
NEW_SAL, REVISED_DT)

VALUES

7 (SQ_ARC.NEXTVAL, :OLD.EMPID,:OLD.SALARY,
:NEW.SALARY, SYSDATE);

8 END;
9 /

15.15 INSTEAD OF TRIGGERS (VIEW TRIGGERS):

While database programming sometimes there may be
situation that the triggers has two options and it must fired with
alternate options. The INSTEAD OF trigger satisfy the condition.
Triggers on views are known as INSTEAD OF triggers. They are
known by their name because they skip the current triggering event
action and perform alternate one. Other reason could be that only
timing mode available in such triggers is INSTEAD OF. It is
required for the complex view because it is based on more than
one table. Any DML on complex view would be successful only if all
key columns, not null columns are selected in the view definition.
Alternatively, INSTEAD OF trigger can be created to synchronize
the effect of DML across all the tables.

Instead of trigger is a row level trigger and can be used only
with a view, and not with tables. For

Example, following view ORD_VU is created on top of ORDERS
and WAREHOUSE tables. If
RET_LIMIT is attempted for update in the view, a record must be
added to WAREHOUSE_HISTORY table and new value must be
updated in the WAREHOUSE table.

268

SELECT O.ID, O.QTY, O.ORD_DATE, P.SITE_ID,
P.RET_LIMIT

FROM ORDERS O, WAREHOUSE P

WHERE O.SITE_ID=P.SITE_ID

CREATE OR REPLACE TRIGGER T_UPD_ORDERVIEW

INSTEAD OF UPDATE ON ORD_VU

BEGIN

INSERT INTO WAREHOUSE_HISTORY

(SITE_ID, OLD_RET_LIMIT, NEW_RET_LIMIT,
UPD_DATE, UPD_USER)

VALUES

(:OLD.SITE_ID, :OLD_RET_LIMIT, :NEW.RET_LIMIT,
SYSDATE, USER);

UPDATE WAREHOUSE

SET RET_LIMIT = :NEW.RET_LIMIT

WHERE SITE_ID = :OLD.SITE_ID;

END;

/

15.16 LISTING OF TRIGGERS INFORMATION:

We can see all our user defined triggers by doing a select
statement on USER_TRIGGERS. This will gives us clear idea
about the trigger and its structure.
For example:

SELECT TRIGGER_NAME FROM USER_TRIGGERS;

Above statement produces the names of all triggers. We can
also select more columns to get more detailed trigger information.
We can do that at our own relaxation, and explore it on our own.

15.17 ALTERING A TRIGGER:

There is facility to change the trigger code and conditions. If
a trigger seems to be getting in the way, and we don’t want to drop
it, just disable it for a little while, we can alter it to disable it. Note
that this is not the same as dropping a trigger; after we drop a
trigger, it is gone.

The general format of an alter would be something like this:

ALTER TRIGGER trigger_name [ENABLE|DISABLE];

269

For example, let’s say that with all our troubles, we still need to
modify the DOB of ’SONALI SAMBARE ’. We cannot do this since
we have a trigger on that table that prevents just that. So, we can
disable it...

ALTER TRIGGER PERSON_DOB DISABLE;

Now, we can go ahead and modify the DOB :-)

UPDATE PERSON SET DOB = SYSDATE WHERE NAME =
’YASHASHREE SAMBARE’;

We can then re-ENABLE the trigger.

ALTER TRIGGER PERSON_DOB ENABLE;

If we then try to do the same type of modification, the trigger kicks
and prevents us from modifying the DOB.

 Syntax for removing Triggers:
For removing the trigger we have to use following syntax.

DROP TRIGGER trigger_name;

15.18 KNOWING INFORMATION ABOUT TRIGGERS:

We can use the data dictionary view 'USER_TRIGGERS' to obtain
information about any trigger. The below statement shows the
structure of the view 'USER_TRIGGERS’.

DESC USER_TRIGGERS;

NAME Type
--
TRIGGER_NAME VARCHAR2(30)
TRIGGER_TYPE VARCHAR2(16)
TRIGGER_EVENT VARCHAR2(75)
TABLE_OWNER VARCHAR2(30)
BASE_OBJECT_TYPE VARCHAR2(16)
TABLE_NAME VARCHAR2(30)
COLUMN_NAME VARCHAR2(4000)
REFERENCING_NAMES VARCHAR2(128)
WHEN_CLAUSE VARCHAR2(4000)
STATUS VARCHAR2(8)
DESCRIPTION VARCHAR2(4000)
ACTION_TYPE VARCHAR2(11)
TRIGGER_BODY LONG
This view stores information about header and body of the trigger.

SELECT * FROM user_triggers WHERE trigger_name =
'Before_Update_product';

270

The above SQL query provides the header and body of the trigger
'Before_Update_Stat_product'.
We can drop a trigger using the following command.

DROP TRIGGER trigger_name;

15.19 CYCLIC CASCADING in a TRIGGER:

Sometimes the triggers may create some critical situation. This is
an undesirable situation where more than one trigger enters into an
infinite loop. While creating a trigger we should ensure the situation
does not exist.

Let's consider we have two tables 'inv' and 'product'. Two triggers
are created.

1) The INSERT Trigger, triggerA on table 'inv' issues an UPDATE
on table 'product'.

2) The UPDATE Trigger, triggerB on table 'product' issues an
INSERT on table 'inv'.

In such a situation, when there is a row inserted in table 'inv',
triggerA fires and will update table 'product'. When the table
'product' is updated, triggerB fires and will insert a row in table 'inv'.
This cyclic situation continues and will enter into a infinite loop,
which will crash the database.

15.20 BOUNDARIES ON TRIGGER CONDITIONS:

Trigger conditions are subject to the following restrictions:

1) If we specify this clause for a DML event trigger, then we must
also specify FOR EACH ROW. Oracle Database evaluates this
condition for each row affected by the triggering statement.

2) We cannot specify trigger conditions for INSTEAD OF trigger
statements.

3) We can reference object columns or their attributes, or varray,
nested table, or LOB columns. We cannot invoke PL/SQL functions
or methods in the trigger condition.

15.21 TRIGGER EXCEPTIONS:

271

Triggers become part of the transaction of a statement,
which implies that it causes (or raises) any exceptions, the whole
statement is rolled back.

Think of an exception as a flag that is raised when an error
occurs. Sometimes, an error or exception is raised for a valid
reason. For example, to prevent some action that improperly
modifies the database. Let’s say that our database should not allow
anyone to modify their DOB (after the person is in the database,
their DOB is assumed to be static). Anyway, we can create a trigger
that would prevent us from updating the DOB:

CREATE OR REPLACE
TRIGGER change_resist_id
BEFORE UPDATE OF empid ON employee
FOR EACH ROW
BEGIN
RAISE_APPLICATION_ERROR (-20000,’CANNOT
CHANGE DATE OF BIRTH’);
END;
/

Notice the format of the trigger declaration. We explicitly
specify that it will be called BEFORE UPDATE OF DOB ON
PERSON. The next thing we should notice is the procedure call
RAISE APPLICATION ERROR, which accepts an error code, and
an explanation string. This effectively halts our trigger execution,
and raises an error, preventing our DOB from being modified. An
error (exception) in a trigger stops the code from updating the DOB.
When we do the actual update for example

UPDATE PERSON SET DOB = SYSDATE;

We end up with an error, which says we CANNOT CHANGE DATE
OF BIRTH.

UPDATE PERSON SET DOB = SYSDATE;

UPDATE PERSON SET DOB = SYSDATE
*
ERROR at line 1:
ORA-20000: CANNOT CHANGE DATE OF BIRTH
ORA-06512: at "PARTICLE.PERSON_DOB", line 2
ORA-04088: error during execution of trigger
’PARTICLE.PERSON_DOB’

We should also notice the error code of ORA-20000. This is our -

20000 parameter to RAISE APPLICATION ERROR.

272

15.22 PRIVILEGES REQUIRED TO USE TRIGGERS:

To work with triggers we have to satisfy some conditions. To create
a trigger in our schema:

 We must have the CREATE TRIGGER system privilege
 One of the following must be true:

o We own the table specified in the triggering statement
o We have the ALTER privilege for the table specified in

the triggering statement
o We have the ALTER ANY TABLE system privilege

To create a trigger in another schema, or to reference a
table in another schema from a trigger in our schema:

 We must have the CREATE ANY TRIGGER system privilege.
 We must have the EXECUTE privilege on the referenced

subprograms or packages.

To create a trigger on the database, we must have the
ADMINISTER DATABASE TRIGGER privilege. If this privilege is later
revoked, we can drop the trigger but not alter it.

The object privileges to the schema objects referenced in the
trigger body must be granted to the trigger owner explicitly (not
through a role). The statements in the trigger body operate under
the privilege domain of the trigger owner, not the privilege domain
of the user issuing the triggering statement (this is similar to the
privilege model for stored subprograms).

15.23 QUESTIONS:

1. Define Triggers. Explain the syntax of creating triggers in
PL/SQL.

2. Explain the types of triggers.

3. Distinguish between BEFORE and AFTER Triggers.

4. Write the execution hierarchy of Triggers.

5. Distinguish between Statement Level and Row Level Triggers.

6. How to create DML statement Triggers.

7. Explain the conditional predicate to detect the Trigger DML
operation.

8. Explain the creation of DML Row Level Trigger with example.

9. How to call procedure in Trigger body.

10.Explain the creation of Database Event Trigger with example.

273

11.Explain the creation of SCHEMA Trigger with example.

12.Explain Triggers on view.

13.How to View, Alter and Remove Triggers? Explain with
examples.

14.Explain Cyclic Cascading in Triggers.

15.List and Explain the Restrictions on Trigger Conditions.

16.Write short note on Trigger Exceptions.

17.List and Explain Privileges Required to Use Triggers. Create a
student view for student’s personal information.

18.Create a view for Teacher and change it to select all teachers
having subject I.T...

15.24 FURTHER READING

 Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and
Associates.

 Oracle Database 11g PL/SQL Programming Workbook, ISBN:
9780070702264,

By: Michael McLaughlin,John Harper, TATAMCGRAW-HILL

 Oracle PL/SQL Programming, Fifth Edition By Steven
Feuerstein, Bill Pribyl

 Oracle 11g: SQL Reference Oracle press

 Oracle 11g: PL/SQL Reference Oracle Press.

 Expert Oracle PL/SQL, By: Ron Hardman,Michael McLaughlin,
TATAMCGRAW-HILL

 Oracle database 11g: hands on SQL/PL SQL by Satish Asnani
(PHI) EEE edition

