
Operating System F.Y.BSc.IT Prof. Sujata Rizal 

1 
 

Unit I 

Chapter 2: Process and Threads 

 

Introduction: 

Processes are one of the oldest and most important abstractions that operating systems 

provide. They support the ability to have (pseudo) simultaneous operation even when 

there is only one CPU available. They turn a single CPU into multiple virtual CPUs. 

Without the process abstraction, modern computing could not exist.  

PROCESSES 

All latest computers frequently do various things at the same time. People used to 

working with personal computers may not be fully aware of this fact, so a few examples 

may make the point clearer. First examine a Web server. Requests come in from all over 

asking for Web pages. When a request comes in, the server checks to see if the page 

needed is in the cache. If it is, it is sent back; if it is not, a disk request is started to fetch 

it. However, from the CPU's point of view, disk requests take a very long time. While 

waiting for the disk request to complete, many more requests may come in. If there are 

multiple disks present, some or all of them may be fired off to other disks long before 

the first request is satisfied. Obviously some way is required to model and control this 

concurrency. Processes (and especially threads) can help here. 

 

Now examine a user PC. When the system is booted, many processes are secretly 
started, often unknown to the user. For instance, a process may be started up to wait 
for incoming e-mail. Another process may run on behalf of the antivirus program to 
check from time to time if any new virus definitions are available. In addition, explicit 
user processes may be running, printing files and burning a CDROM, all while the user is 
surfing the Web. All this activity has to be managed, and a multiprogramming system 
supporting multiple processes comes in very useful here. 
 

In any multiprogramming system, the CPU switches from process to process quickly, 
running each for tens or hundreds of milliseconds. While, strictly speaking, at any 
instant of time, the CPU is running only one process, in the course of 1 second, it may 
work on several of them, giving the false impression of parallelism. Sometimes people 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

2 
 

speak of pseudoparallelism in this perspective, to compare it with the true hardware 
parallelism of multiprocessor systems (which have two or more CPUs sharing the same 
physical memory). Keeping track of multiple, parallel activities is hard for people to do. 
Therefore, operating system designers over the years have developed a conceptual 
model (sequential processes) that makes parallelism easier to handle.  
 

Process Control Block (PCB) 

• A Process Control Block is a data structure maintained by the Operating System 

for every process. The PCB is identified by an integer process ID (PID). A PCB 

keeps all the information needed to keep track of a process as listed below in the 

table − 

 

S.N. Information & Description 

1 Process State 

The current state of the process i.e., whether it is ready, running, waiting, or whatever. 

2 Process privileges 

This is required to allow/disallow access to system resources. 

3 Process ID 

Unique identification for each of the process in the operating system. 

4 Pointer 

A pointer to parent process. 

5 Program Counter 

Program Counter is a pointer to the address of the next instruction to be executed for 

this process. 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

3 
 

6 CPU registers 

Various CPU registers where process need to be stored for execution for running state. 

7 CPU Scheduling Information 

Process priority and other scheduling information which is required to schedule the 

process. 

8 Memory management information 

This includes the information of page table, memory limits, Segment table depending 

on memory used by the operating system. 

9 Accounting information 

This includes the amount of CPU used for process execution, time limits, execution ID 

etc. 

10 IO status information 

This includes a list of I/O devices allocated to the process. 

 

• The architecture of a PCB is completely dependent on Operating System and may 

contain different information in different operating systems. Here is a simplified       

diagram of a PCB −  



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

4 
 

Process Life Cycle 

• When a process executes, it passes through different states. These stages may 

differ in different operating systems, and the names of these states are also not 

standardized. 

• In general, a process can have one of the following five states at a time. 

 

S.N. State & Description 

1 Start 

This is the initial state when a process is first started/created. 

2 Ready 

The process is waiting to be assigned to a processor. Ready processes are waiting to 

have the processor allocated to them by the operating system so that they can run. 

Process may come into this state after Start state or while running it by but interrupted 

by the scheduler to assign CPU to some other process. 

3 Running 

Once the process has been assigned to a processor by the OS scheduler, the process 

state is set to running and the processor executes its instructions. 

 

4 Waiting 

Process moves into the waiting state if it needs to wait for a resource, such as 

waiting for user input, or waiting for a file to become available. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

5 
 

5 Terminated or Exit 

Once the process finishes its execution, or it is terminated by the operating 

system, it is moved to the terminated state where it waits to be removed from 

main memory. 

 

When an operating system is booted, normally various processes are created. Some of 

these are foreground processes, that is, processes that interact with (human) users and 

perform work for them. Others are background processes, which are not associated 

with specific users, but instead have some particular function. For instance, one 

background process may be designed to accept incoming e-mail, sleeping most of the 

day but suddenly springing to life when incoming e-mail arrives. Another background 

process may be designed to accept incoming requests for Web pages hosted on that 

machine, waking up when a request arrives to service the request. Processes that stay in 

the background to handle some activity such as e-mail, Web pages, news, printing, and 

so on are called daemons. Large systems generally have dozens of them. In UNIX, the ps 

program can be used to list the running processes. In Windows, the task manager can be 

used. 

 

Process Creation 

Operating systems require some way to make processes. In very simple systems, or in 

systems designed for running only a single application  (e.g., the controller in a 

microwave oven), it may be possible to have all the processes that will ever be needed 

be present when the system  comes up. In general-purpose systems, however, some 

way is required to create and finish processes as required during operation. We will now 

look at some of the issues. 

 

There are four principal events that cause processes to be created: 

1 . System initialization. 

2. Execution of a process creation system call by a running process. 

3 . A user request to create a new process. 

4 . Initiation of a batch job. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

6 
 

Process Termination 

After a process has been created, it starts running and performs whatever its job is. 

However, nothing lasts forever, not even processes. Sooner or later the new process will 

end, generally due to one of the following conditions: 

 

1. Normal exit (voluntary). 

2. Error exit (voluntary). 

3. Fatal error (involuntary). 

4. Killed by another process (involuntary). 

Process Hierarchies 

In some systems, when a process creates another process, the parent process and child 

process continue to be connected in certain ways. The child process can itself create 

more processes, forming a process hierarchy. Note that unlike plants and animals that 

use sexual reproduction, a  process has only one parent (but zero, one, two, or more 

children). 

 

In UNIX, a process and all of its children and further descendants together form a 

process group. When a user sends a signal from the keyboard,  the signal is delivered to 

all members of the process group currently connected with the keyboard (generally all 

active processes that were created in the current window). Individually, each process 

can catch the signal, ignore the signal, or take the default action, which is to be killed by 

the signal. 

 

Implementation of Processes 

To implement the process model, the operating system maintains a table (an array of 

structures), called the process table, with one entry per process. (Some authors call 

these entries process control blocks.) This entry includes important information about 

the process state, containing its program counter, stack pointer, memory allocation, the 

status of its open files, its accounting and scheduling information, and everything else 

about the process that must be  saved when the process is switched from running to 

ready or blocked state so that it can be restarted later as if it had never been stopped. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

7 
 

 

 

Modeling Multiprogramming 

When multiprogramming is used, the CPU utilization can be improved. Crudely put, if 
the average process computes only 20% of the time it is sitting in memory, with five 
processes in memory at once, the CPU should be busy all the time. This model is 
unrealistically hopeful, however, since it tacitly assumes that all five processes will never 
be waiting for I/O at the same time. 
 
A better model is to look at CPU usage from a probabilistic viewpoint. Assume that a 
process spends a fraction p of its time waiting for I/O to complete. With n processes in 
memory at once, the probability that all n processes are waiting for I/O (in which case 
the CPU will be idle) is pn.  The CPU utilization is then given by the formula 
 
          CPU utilization = 1 - pn 
 
The following figure shows the CPU utilization as a function of n, which is called the 
degree of multiprogramming. 
 

 
 

From the figure it is clear that if processes spend 80% of their time waiting for I/O, at 

least 10 processes must be in memory at once to get the CPU waste below 10%. When 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

8 
 

you understand that an interactive process waiting for a user to type something at a 

terminal is in I/O wait state, it should be clear that I/O wait times of 80% and more are 

not abnormal. But even on servers, processes doing a lot of disk I/O will sometimes have 

this percentage or more. 

 

What is Thread? 

• A thread is a flow of execution through the process code, with its own program 

counter that keeps track of which instruction to execute next, system registers 

which hold its current working variables, and a stack which contains the 

execution history. 

• A thread shares with its peer threads few information like code segment, data 

segment and open files. When one thread alters a code segment memory item, 

all other threads see that. 

 

Thread Usage 
 

Why would anyone want to have a kind of process within a process? It turns out there 

are various reasons for having these miniprocesses, called threads. Let us now look at 

some of them. The major reason for having threads is that in many applications, 

multiple activities are going on at once. Some of these may block from time to time. By 

decomposing such an application into multiple sequential threads that run in quasi-

parallel, the programming model becomes simpler. 

In usual operating systems, each process has an address space and a single thread of 

control. In reality, that is almost the definition of a process. However, there are often 

situations in which it is desirable to have multiple threads of control in the same address 

space  running in quasi-parallel, as though they were (almost) separate processes 

(except for the shared address space). In the following sections we will talk about these 

situations and their implications. 
 
 
 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

9 
 

Thread Usage 

 
Why would anyone want to have a kind of process within a process? It turns out there 

are various reasons for having these miniprocesses, called threads. Let us now look at 

some of them. The major reason for having threads is that in many applications, 

multiple activities are going on at once. Some of these may block from time to time. By 

decomposing such an application into multiple sequential threads that run in quasi-

parallel, the programming model becomes simpler. 

 

We have seen this argument before. It is specifically the argument for having processes. 

Instead of thinking about interrupts, timers, and context switches, we can think about 

parallel processes. Only now with threads we add a new element: the ability for the 

parallel entities to share an address space and all of its data among themselves. This 

ability is necessary for certain applications, which is why having multiple processes (with 

their separate address spaces) will not work. 

 

A second argument for having threads is that since they are lighter weight than 

processes, they are easier (i.e., faster) to create and destroy than processes. In many 

systems, creating a thread goes 10-100 times faster than creating a process. When the 

number of threads required changes dynamically and rapidly, this property is useful to 

have. 

 

A third reason for having threads is also a performance argument. Threads yield no 

performance gain when all of them are CPU bound, but when there is substantial 

computing and also substantial I/O, having threads allows these activities to overlap, 

hence speeding up the application. 

 

Finally, threads are useful on systems with multiple CPUs, where real parallelism is 

possible. We will come back to this issue in "MULTIPLE PROCESSOR SYSTEMS". 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

10 
 

 

Difference between Process and Thread 

1. Threads are easier to create than processes since they don't require a separate 

address space.  

2. Multithreading requires careful programming since threads share data 

structures that should only be modified by one thread at a time. Unlike threads, 

processes don't share the same address space.  

3. Threads are considered lightweight because they use far less resources than 

processes.  

4. Processes are independent of each other. Threads, since they share the same 

address space are interdependent, so caution must be taken so that different 

threads don't step on each other.  

5. A process can consist of multiple threads. 

S.N. Process Thread 

1 Process is heavy weight or resource 

intensive. 

Thread is light weight, taking lesser 

resources than a process. 

2 Process switching needs interaction with 

operating system. 

Thread switching does not need to interact 

with operating system. 

3 In multiple processing environments, 

each process executes the same code but 

All threads can share same set of open files, 

child processes. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

11 
 

has its own memory and file resources. 

4 If one process is blocked, then no other 

process can execute until the first 

process is unblocked. 

While one thread is blocked and waiting, a 

second thread in the same task can run. 

5 Multiple processes without using threads 

use more resources. 

Multiple threaded processes use fewer 

resources. 

6 In multiple processes each process 

operates independently of the others. 

One thread can read, write or change 

another thread's data. 

 

Advantages of Thread 

• Threads minimize the context switching time. 

• Use of threads provides concurrency within a process. 

• Efficient communication. 

• It is more economical to create and context switch threads. 

• Threads allow utilization of multiprocessor architectures to a greater scale and 

efficiency. 

Disadvantages 

• In a typical operating system, most system calls are blocking. 

• Multithreaded application cannot take advantage of multiprocessing. 

Types of Thread 

• Threads are implemented in following two ways − 

• User threads, are above the kernel and without kernel support. These are the 

threads that application programmers use in their programs. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

12 
 

• Kernel threads are supported within the kernel of the OS itself. All modern OSs 

support kernel level threads, allowing the kernel to perform multiple 

simultaneous tasks and/or to service multiple kernel system calls simultaneously. 

 

User Level Threads 

• In this case, the thread management kernel is not aware of the existence of 

threads. The thread library contains code for creating and destroying threads, for 

passing message and data between threads, for scheduling thread execution and 

for saving and restoring thread contexts. The application starts with a single 

thread. 

 

 

Advantages 

• Thread switching does not require Kernel mode privileges. 

• User level thread can run on any operating system. 

• Scheduling can be application specific in the user level thread. 

• User level threads are fast to create and manage. 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

13 
 

Kernel Level Threads 

• In this case, thread management is done by the Kernel. There is no thread 

management code in the application area. Kernel threads are supported directly 

by the operating system. Any application can be programmed to be 

multithreaded. All of the threads within an application are supported within a 

single process. 

• The Kernel maintains context information for the process as a whole and for 

individuals threads within the process. Scheduling by the Kernel is done on a 

thread basis. The Kernel performs thread creation, scheduling and management 

in Kernel space. Kernel threads are generally slower to create and manage than 

the user threads. 

 

Advantages 

• Kernel can simultaneously schedule multiple threads from the same process on 

multiple processes. 

• If one thread in a process is blocked, the Kernel can schedule another thread of 

the same process. 

• Kernel routines themselves can be multithreaded. 

 

Disadvantages 

• Kernel threads are generally slower to create and manage than the user threads. 

• Transfer of control from one thread to another within the same process requires 

a mode switch to the Kernel. 

 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

14 
 

 

Difference between User-Level & Kernel-Level Thread 

S.N. User-Level Threads Kernel-Level Thread 

1 User-level threads are faster to create 

and manage. 

Kernel-level threads are slower to create 

and manage. 

2 Implementation is by a thread library at 

the user level. 

Operating system supports creation of 

Kernel threads. 

3 User-level thread is generic and can run 

on any operating system. 

Kernel-level thread is specific to the 

operating system. 

4 Multi-threaded applications cannot take 

advantage of multiprocessing. 

Kernel routines themselves can be 

multithreaded. 

 

One way to organize the Web server is shown in Fig. 2(a). Here one thread, the 
dispatcher, reads incoming requests for work from the network. After examining the 
request, it chooses an idle (i.e., blocked) worker thread and hands it the request, 
possibly by writing a pointer to the message into a special word linked with each thread. 
The dispatcher then wakes up the sleeping worker, moving it from blocked state to 
ready state. 
 

 
 

When the worker wakes up, it checks to see if the request can be satisfied from the Web 

page cache, to which all threads have access. If not, it starts a read operation to get the 

page from the disk and blocks until the disk operation completes. When the thread 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

15 
 

blocks on the disk operation, another thread is chosen to run, possibly the dispatcher, in 

order to acquire more work, or possibly another worker that is now ready to run. 

 

The Classical Thread Model 

What threads add to the process model is to allow multiple executions to take place in 

the same process environment, to a large degree independent of one another. Having 

multiple threads running in parallel in one process is similar to having multiple processes 

running in parallel in one computer. In the former case, the threads share an address 

space and other resources. In the latter case, processes share physical memory, disks, 

printers, and other resources. Because threads have some of the properties of 

processes, they are sometimes called lightweight processes. The term multithreading is 

also used to explain the situation of allowing various threads in the same process. 

In Fig.1.(a) we see three usual processes. Each process has its own address space and a 

single thread of control. On the contrary, in Fig.1.(b) we see a single process with three 

threads of control. Though in both cases we have three threads, in Fig.1.(a) each of 

them operates in a different address space, whereas in Fig.1.(b) all three of them share 

the same address space. 
 
 

 
 

Multithreading Models 

• Some operating system provide a combined user level thread and Kernel level 

thread facility. Solaris is a good example of this combined approach. In a 

combined system, multiple threads within the same application can run in 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

16 
 

parallel on multiple processors and a blocking system call need not block the 

entire process. Multithreading models are three types 

• Many to many relationship. 

• Many to one relationship. 

• One to one relationship. 

 

Many-To-One Model 

• In the many-to-one model, many user-level threads are all mapped onto a single 

kernel thread. 

• Thread management is handled by the thread library in user space, which is 

efficient in nature. 

 

One-To-One Model 

• The one-to-one model creates a separate kernel thread to handle each and every 

user thread. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

17 
 

• Most implementations of this model place a limit on how many threads can be 

created. 

• Linux and Windows from 95 to XP implement the one-to-one model for threads. 

 

Many-To-Many Model 

• The many-to-many model multiplexes any number of user threads onto an equal 

or smaller number of kernel threads, combining the best features of the one-to-

one and many-to-one models. 

• Users can create any number of the threads. 

• Blocking the kernel system calls does not block the entire process. 

• Processes can be split across multiple processors. 

 

 

Thread Libraries 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

18 
 

• Thread libraries provides programmers with API for creating and managing of 

threads. 

• Thread libraries may be implemented either in user space or in kernel space. The 

user space involves API functions implemented solely within user space, with no 

kernel support. The kernel space involves system calls, and requires a kernel with 

thread library support. 

 

There are three types of thread : 

• POSIX Pthreads, may be provided as either a user or kernel library, as an 

extension to the POSIX standard. 

• Win32 threads, are provided as a kernel-level library on Windows systems. 

• Java threads - Since Java generally runs on a Java Virtual Machine, the 

implementation of threads is based upon whatever OS and hardware the JVM is 

running on, i.e. either Pitheads or Win32 threads depending on the system 

 

Implementing Threads in the Kernel 

The kernel's thread table holds each thread's registers, state, and other information. 

The information is the same as with user-level threads, but now kept in the kernel 

instead of in user space (inside the run-time system). This information is a subset of the 

information that traditional kernels keep up about their single threaded processes, that 

is, the process state. In addition, the kernel also maintains the traditional process table 

to keep track of processes. 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

19 
 

Benefits of Multithreading 

• Responsiveness 

• Resource sharing, hence allowing better utilization of resources. 

• Economy. Creating and managing threads becomes easier. 

• Scalability. One thread runs on one CPU. In Multithreaded processes, threads can 

be distributed over a series of processors to scale. 

• Context Switching is smooth. Context switching refers to the procedure followed 

by CPU to change from one task to another. 

 

Multithreading Issues 

• Thread Cancellation. Thread cancellation means terminating a thread before it 

has finished working. There can be two approaches for this, one is Asynchronous 

cancellation, which terminates the target thread immediately. The other 

is Deferred cancellation allows the target thread to periodically check if it should 

be cancelled. 

• Signal Handling. Signals are used in UNIX systems to notify a process that a 

particular event has occurred. Now in when a Multithreaded process receives a 

signal, to which thread it must be delivered? It can be delivered to all, or a single 

thread. 

• fork() System Call. fork() is a system call executed in the kernel through which a 

process creates a copy of itself. Now the problem in Multithreaded process is, if 

one thread forks, will the entire process be copied or not? 

• Security Issues because of extensive sharing of resources between multiple 

threads. 

 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

20 
 

Hybrid Implementations 

• Various ways have been investigated to try to combine the advantages of user 

level threads with kernel-level threads. One way is use kernel-level threads and 

then multiplex user-level threads onto some or all of them. 

• When this approach is used, the programmer can determine how many kernel 

threads to use and how many user-level threads to multiplex on each one. This 

model gives the ultimate in flexibility. 

 

Scheduler Activations 

• The goals of the scheduler activation work are to mimic the functionality of 

kernel threads, but with the better performance and greater flexibility. 

• User threads should not have to make special nonblocking system calls or check 

in advance if it is safe to make certain system calls. Nevertheless, when a thread 

blocks on a system call or on a page fault, it should be possible to run other 

threads within the same process, if any are ready. 

• When scheduler activations are used, the kernel assigns a certain number of 

virtual processors to each process and lets the (user-space) run-time system 

allocate threads to processors. 

Pop-Up Threads 

• Threads are frequently useful in distributed systems. An important example is 

how incoming messages, for example requests for service, are handled. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

21 
 

• When a message arrives, it accepts the message, unpacks it, examines the 

contents, and processes it. 

• However, a completely different approach is also possible, in which the arrival of 

a message causes the system to create a new thread to handle the message. Such 

a thread is called a pop-up thread 

• A key advantage of pop-up threads is that since they are brand new, they do not 

have any history— registers, stack, whatever—that must be restored. Each one 

starts out fresh and each one is identical to all the others.  

• This makes it possible to create such a thread quickly. The new thread is given the 

incoming message to process. The result of using pop-up threads is that the 

latency between message arrival and the start of processing can be made very 

short. 

 

 

INTERPROCESS COMMUNICATION 

• Processes frequently need to communicate with other processes. 

• Thus there is a need for communication between processes, preferably in a well-

structured way not using interrupts. 

• Very briefly, there are three issues here. The first was alluded to above: how one 

process can pass information to another. The second has to do with making sure 

two or more processes do not get in each other’s way, for example, two 

processes in an airline reservation system each trying to grab the last seat on a 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

22 
 

plane for a different customer. The third concerns proper sequencing when 

dependencies are present: if process A produces data and process B prints them, 

B has to wait until A has produced some data before starting to print. 

• It is also important to mention that two of these issues apply equally well to 

threads. The first one—passing information—is easy for threads since they share 

a common address space (threads in different address spaces that need to 

communicate fall under the heading of communicating processes). 

Race Conditions 

• To see how interprocess communication works in practice, let us now consider a 

simple but common example: 

• At a certain instant, slots 0 to 3 are empty (the files have already been printed) 

and slots 4 to 6 are full (with the names of files queued for printing). More or less 

simultaneously, processes A and B decide they want to queue a file for printing. 

 

Critical Regions 

• How do we avoid race conditions? The key to preventing trouble here and in 

many other situations involving shared memory, shared files, and shared 

everything else is to find some way to prohibit more than one process from 

reading and writing the shared data at the same time. Put in other words, what 

we need is mutual exclusion, that is, some way of making sure that if one process 

is using a shared variable or file, the other processes will be excluded from doing 

the same thing. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

23 
 

• That part of the program where the shared memory is accessed is called the 

critical region or critical section. If we could arrange matters such that no two 

processes were ever in their critical regions at the same time, we could avoid 

races. We need four conditions to hold to have a good solution: 

1. No two processes may be simultaneously inside their critical regions. 

2. No assumptions may be made about speeds or the number of CPUs. 

3. No process running outside its critical region may block any process. 

4. No process should have to wait forever to enter its critical region. 

 

Mutual Exclusion with Busy Waiting 

• Disabling Interrupts:  On a single-processor system, the simplest solution is to 

have each process disable  all interrupts just after entering its critical region and 

re-enable them just before leaving it. With interrupts disabled, no clock 

interrupts can occur. The CPU is only switched from process to process as a result 

of clock or other interrupts, after all, and with interrupts turned off the CPU will 

not be switched to another process. 

• Thus, once a process has disabled interrupts, it can examine and update the 

shared memory without fear that any other process will intervene. 

 

Synchronization Hardware 

• Many systems provide hardware support for critical section code. The critical 

section problem could be solved easily in a single-processor environment if we 

could disallow interrupts to occur while a shared variable or resource is being 

modified. 

• In this manner, we could be sure that the current sequence of instructions would 

be allowed to execute in order without pre-emption. Unfortunately, this solution 

is not feasible in a multiprocessor environment. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

24 
 

• Disabling interrupt on a multiprocessor environment can be time consuming as 

the message is passed to all the processors. 

• This message transmission lag, delays entry of threads into critical section and 

the system efficiency decreases. 

Mutex Locks 

• As the synchronization hardware solution is not easy to implement fro everyone, 

a strict software approach called Mutex Locks was introduced. In this approach, 

in the entry section of code, a LOCK is acquired over the critical resources 

modified and used inside critical section, and in the exit section that LOCK is 

released. 

• As the resource is locked while a process executes its critical section hence no 

other process can access it. 

Semaphores 

• In 1965, Dijkstra proposed a new and very significant technique for managing 

concurrent processes by using the value of a simple integer variable to 

synchronize the progress of interacting processes. This integer variable is 

called semaphore. So it is basically a synchronizing tool and is accessed only 

through two low standard atomic operations, wait and signal designated by P() 

and V() respectively. 

• The classical definition of wait and signal are : 

• Wait: decrement the value of its argument S as soon as it would become non-

negative. 

• Signal: increment the value of its argument, S as an individual operation. 

 

Properties of Semaphores 

• Simple 

• Works with many processes 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

25 
 

• Can have many different critical sections with different semaphores 

• Each critical section has unique access semaphores 

• Can permit multiple processes into the critical section at once, if desirable. 

 

Types of Semaphores 

• Semaphores are mainly of two types: 

• Binary Semaphore: It is a special form of semaphore used for implementing 

mutual exclusion, hence it is often called Mutex. A binary semaphore is initialized 

to 1 and only takes the value 0 and 1 during execution of a program. 

• Counting Semaphores: These are used to implement bounded concurrency. 

 

Limitations of Semaphores 

• Priority Inversion is a big limitation os semaphores. 

• Their use is not enforced, but is by convention only. 

• With improper use, a process may block indefinitely. Such a situation is called 

Deadlock. We will be studying deadlocks in details in coming lessons. 

 

SCHEDULING 

When a computer is multiprogrammed, it often has multiple processes or threads 

competing for the CPU simultaneously. This situation happens whenever two or 

more of them are in the ready state at the same time. If only one CPU is available, a 

choice has to be made which process to run next. The part of the operating system 

that makes the choice is called the scheduler and the algorithm it uses is called the 

scheduling algorithm. These topics form the subject matter of the following sections. 

 

Many of the same problems that apply to process scheduling also apply to thread 

scheduling, though some are different. When the kernel manages threads, 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

26 
 

scheduling is generally done per thread, with little or no regard to which process the 

thread belongs. At first we will focus on scheduling issues that apply to both 

processes and threads. Later on we will explicitly look at thread scheduling and some 

of the unique issues it raises.  

Process Scheduling 

• The act of determining which process in the ready state should be moved to the 

running state is known as Process Scheduling. 

• The prime aim of the process scheduling system is to keep the CPU busy all the 

time and to deliver minimum response time for all programs. For achieving this, 

the scheduler must apply appropriate rules for swapping processes IN and OUT of 

CPU. 

• Schedulers fell into one of the two general categories : 

• Preemptive scheduling: The preemptive scheduling is prioritized. The highest 

priority process should always be the process that is currently utilized. 

 

Non-Preemptive scheduling: When a process enters the state of running, the 

state of that process is not deleted from the scheduler until it finishes its service 

time. 

 

CPU Scheduling 

• CPU scheduling is a process which allows one process to use the CPU while the 

execution of another process is on hold(in waiting state) due to unavailability of 

any resource like I/O etc, thereby making full use of CPU. The aim of CPU 

scheduling is to make the system efficient, fast and fair. 

 

Scheduling Criteria 

• There are many different criteria to check when considering the "best" 

scheduling algorithm : 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

27 
 

• CPU utilization: To make out the best use of CPU and not to waste any CPU cycle, 

CPU would be working most of the time(Ideally 100% of the time). Considering a 

real system, CPU usage should range from 40% (lightly loaded) to 90% (heavily 

loaded.) 

• Throughput: It is the total number of processes completed per unit time or rather 

say total amount of work done in a unit of time. This may range from 10/second 

to 1/hour depending on the specific processes. 

• Turnaround time: It is the amount of time taken to execute a particular process, 

i.e. The interval from time of submission of the process to the time of completion 

of the process(Wall clock time). 

• Waiting time: The sum of the periods spent waiting in the ready queue amount of 

time a process has been waiting in the ready queue to acquire get control on the 

CPU. 

• Load average: It is the average number of processes residing in the ready queue 

waiting for their turn to get into the CPU. 

• Response time: Amount of time it takes from when a request was submitted until 

the first response is produced. Remember, it is the time till the first response and 

not the completion of process execution(final response). 

• In general CPU utilization and Throughput are maximized and other factors are 

reduced for proper optimization. 

 

Scheduling Queues 

• All processes when enters into the system are stored in the job queue. 

• Processes in the Ready state are placed in the ready queue. 

• Processes waiting for a device to become available are placed in device queues. 

There are unique device queues for each I/O device available. 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

28 
 

Types of Schedulers 

• There are three types of schedulers available : 

• Long Term Scheduler :Long term scheduler runs less frequently. Long Term 

Schedulers decide which program must get into the job queue. From the job 

queue, the Job Processor, selects processes and loads them into the memory for 

execution. Primary aim of the Job Scheduler is to maintain a good degree of 

Multiprogramming. An optimal degree of Multiprogramming means the average 

rate of process creation is equal to the average departure rate of processes from 

the execution memory. 

• Short Term Scheduler :This is also known as CPU Scheduler and runs very 

frequently. The primary aim of this scheduler is to enhance CPU performance and 

increase process execution rate. 

• Medium Term Scheduler :During extra load, this scheduler picks out big 

processes from the ready queue for some time, to allow smaller processes to 

execute, thereby reducing the number of processes in the ready queue. 

 

Categories of Scheduling Algorithms 

Not amazingly, in different environments different scheduling algorithms are 

required. This situation happens because different application areas (and different 

kinds of operating systems) have different objectives. In other words, what the 

scheduler should optimize for is not the same in all systems. Three environments 

worth distinguishing are 

 

1. Batch. 
2. Interactive. 
3. Real time. 
 
 

Batch systems are still in extensive use in the business world for doing payroll, 
inventory, accounts receivable, accounts payable, interest  calculation (at banks), claims 
processing (at insurance companies), and other periodic tasks. In batch systems, there 
are no users anxiously waiting at their terminals for a quick response to a short request. 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

29 
 

As a result, nonpreemptive algorithms, or preemptive algorithms with long time periods 
for each process, are frequently acceptable. This approach reduces process switches and 
hence improves performance. The batch algorithms are in fact fairly general and often 
applicable to other situations as well, which makes them worth studying, even for 
people not involved in corporate mainframe computing. 
 
In an environment with interactive users, preemption is necessary to keep one process 
from hogging the CPU and denying service to the others. Even if no process intentionally 
ran forever, one process might shut out all the others indefinitely due to a program bug. 
Preemption is required to prevent this behavior. Servers also fall into this category, 
since they usually serve multiple (remote) users, all of whom are in a big hurry. 
 
In systems with real-time restrictions, preemption is, oddly enough, sometimes not 
required because the processes know that they may not run for long periods of time 
and generally do their work and block quickly. The difference with interactive systems is 
that real-time systems run only programs that are intended to further the application at 
hand. Interactive systems are general purpose and may run arbitrary programs that are 
not cooperative or even malicious. 

 

Scheduling in Batch Systems 

• There are six popular process scheduling algorithms which we are going to 

discuss in this chapter − 

• First-Come, First-Served (FCFS) Scheduling 

• Shortest-Job-Next (SJN) Scheduling 

• Priority Scheduling 

• Shortest Remaining Time 

• Round Robin(RR) Scheduling 

• Multiple-Level Queues Scheduling 

 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

30 
 

First Come First Serve (FCFS) 

• Jobs are executed on first come, first serve basis. 

• It is a non-preemptive scheduling algorithm. 

• Easy to understand and implement. 

• Its implementation is based on FIFO queue. 

• Poor in performance as average wait time is high. 

 

Wait time of each process is as follows − 

Process Wait Time : Service Time - Arrival Time 

P0 0 - 0 = 0 

P1 5 - 1 = 4 

P2 8 - 2 = 6 

P3 16 - 3 = 13 

 

Average Wait Time: (0+4+6+13) / 4 = 5.75 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

31 
 

Shortest Job Next (SJN) 

• This is also known as shortest job first, or SJF 

• This is a non-preemptive scheduling algorithm. 

• Best approach to minimize waiting time. 

• Easy to implement in Batch systems where required CPU time is known in 

advance. 

• Impossible to implement in interactive systems where required CPU time is not 

known. 

• The processer should know in advance how much time process will take. 

 

Wait time of each process is as follows 

Process Wait Time : Service Time - Arrival Time 

P0 3 - 0 = 3 

P1 0 - 0 = 0 

P2 14 - 2 = 12 

P3 8 - 3 = 5 

 

Average Wait Time: (3+0+12+5) / 4 = 5 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

32 
 

Priority Based Scheduling 

• Priority scheduling is a non-preemptive algorithm and one of the most common 

scheduling algorithms in batch systems. 

• Each process is assigned a priority. Process with highest priority is to be executed 

first and so on. 

• Processes with same priority are executed on first come first served basis. 

• Priority can be decided based on memory requirements, time requirements or 

any other resource requirement. 

 

Wait time of each process is as follows 

Process Wait Time : Service Time - Arrival Time 

P0 9 - 0 = 9 

P1 6 - 1 = 5 

P2 14 - 2 = 12 

P3 0 - 0 = 0 

 

Average Wait Time: (9+5+12+0) / 4 = 6.5 

 

 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

33 
 

Shortest Remaining Time  

• Shortest remaining time (SRT) is the preemptive version of the SJN algorithm. 

• The processor is allocated to the job closest to completion but it can be 

preempted by a newer ready job with shorter time to completion. 

• Impossible to implement in interactive systems where required CPU time is not 

known. 

• It is often used in batch environments where short jobs need to give preference. 

 

Round Robin Scheduling 

• Round Robin is the preemptive process scheduling algorithm. 

• Each process is provided a fix time to execute, it is called a quantum. 

• Once a process is executed for a given time period, it is preempted and other 

process executes for a given time period. 

• Context switching is used to save states of preempted processes. 

 

Wait time of each process is as follows 

Process Wait Time : Service Time - Arrival Time 

P0 (0 - 0) + (12 - 3) = 9 

P1 (3 - 1) = 2 

P2 (6 - 2) + (15 - 9) + (21 - 17) = 14 

P3 (9 - 3) + (18 - 12) = 12 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

34 
 

Average Wait Time: (9+2+14+12) / 4 = 9.25 

 

Multiple-Level Queues Scheduling 

• Multiple-level queues are not an independent scheduling algorithm. They make 

use of other existing algorithms to group and schedule jobs with common 

characteristics. 

• Multiple queues are maintained for processes with common characteristics. 

• Each queue can have its own scheduling algorithms. 

• Priorities are assigned to each queue. 

• For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound 

jobs in another queue. The Process Scheduler then alternately selects jobs from 

each queue and assigns them to the CPU based on the algorithm assigned to the 

queue. 

 

Thread Scheduling 

When many processes each have multiple threads, we have two levels of parallelism 

present: processes and threads. Scheduling in such systems differs considerably 

depending on whether user-level threads or kernel-level threads (or both) are 

supported.  

 

Let us examine user-level threads first. Since the kernel is not aware of the existence 

of threads, it functions as it always does, picking a process, say, A, and giving A 

control for its quantum. The thread scheduler inside A determines which thread to 

run, say A1. Since there are no clock interrupts to multiprogram threads, this thread 

may continue running as long as it wants to. If it uses up the process entire quantum, 

the kernel will choose another process to run. 

 

When the process A finally runs again, thread A1 will resume running. It will continue 

to consume all of A's time until it comes to an end. On the other hand its antisocial 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

35 
 

behavior will not affect other processes. They will get whatever the scheduler 

considers their appropriate share, no matter what is going on inside process A.  

A main difference between user-level threads and kernel-level threads is the 

performance. Doing a thread switch with user-level threads takes a handful of machine 

instructions. With kernel-level threads it requires a full context switch, changing the 

memory map and invalidating the cache, which is several orders of magnitude slower. 

However, with kernel-level threads, having a thread block on I/O does not suspend the 

complete process as it does with user-level threads. 

 

 
 

Since the kernel knows that switching from a thread in process A to a thread in 

process B is more expensive than running a second thread in process A (due to 

having to change the memory map and having the memory cache spoiled), it can 

consider this information when making a decision. For instance, given two threads 

that are otherwise equally important, with one of them belonging to the same 

process as a thread that just blocked and one belonging to a different process, 

preference could be given to the former. 

IPC Problems: 

Classical Problem of Synchronization 

• Bounded Buffer Problem : This problem is generalized in terms of the Producer-

Consumer problem. 

• Solution to this problem is, creating two counting semaphores "full" and "empty" 

to keep track of the current number of full and empty buffers respectively. 

 



Operating System F.Y.BSc.IT Prof. Sujata Rizal 

36 
 

The Readers Writers Problem 

• In this problem there are some processes(called readers) that only read the 

shared data, and never change it, and there are other processes(called writers) 

who may change the data in addition to reading or instead of reading it. 

• There are various type of the readers-writers problem, most centered on relative 

priorities of readers and writers 

 

Dining Philosophers Problem 

• The dining philosopher’s problem involves the allocation of limited resources 

from a group of processes in a deadlock-free and starvation-free manner. 

• There are five philosophers sitting around a table, in which there are five 

chopsticks kept beside them and a bowl of rice in the center, When a philosopher 

wants to eat, he uses two chopsticks - one from their left and one from their 

right. When a philosopher wants to think, he keeps down both chopsticks at their 

original place. 

 

Dijkstra's algorithm 

• Dijkstra's algorithm is an algorithm for finding the shortest 

paths between nodes in a graph, which may represent, for example, road 

networks. 

• Dijkstra's algorithm to find the shortest path between a and b. It picks the 

unvisited vertex with the lowest distance, calculates the distance through it to 

each unvisited neighbor, and updates the neighbor's distance if smaller. Mark 

visited (set to red) when done with neighbors. 

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)

