
Operating System Prof. Sujata Rizal

Multiprocessor Scheduling:-

• On a uniprocessor, scheduling is one dimensional. The only question that must be

answered (repeatedly) is: ''Which process should be run next?'' On a multiprocessor,

scheduling is two dimensional. The scheduler has to decide which process to run and

which CPU to run it on. This extra dimension greatly complicates scheduling on

multiprocessors.

• Another complicating factor is that in some systems, all the processes are unrelated

whereas in others they come in groups. An example of the former situation is a

timesharing system in which independent users start up independent processes. The

processes are unrelated and each one can be scheduled without regard to the other

ones

Timesharing

• The simplest scheduling algorithm for dealing with unrelated processes (or threads) is to

have a single system wide data structure for ready processes, possibly just a list, but

more likely a set of lists for processes at different priorities as depicted

• Here the 16 CPUs are all currently busy, and a prioritized set of 14 processes are waiting

to run. The first CPU to finish its current work (or have its process block) is CPU 4, which

then locks the scheduling queues and selects the highest priority process, A

Operating System Prof. Sujata Rizal

• Next, CPU 12 goes idle and chooses process B, as illustrated in Fig. As long as the

processes are completely unrelated, doing scheduling this way is a reasonable choice.

• Having a single scheduling data structure used by all CPUs timeshares the CPUs, much as

they would be in a uniprocessor system. It also provides automatic load balancing

because it can never happen that one CPU is idle while others are overloaded. Two

disadvantages of this approach are the potential contention for the scheduling data

structure as the numbers of CPUs grows and the usual overhead in doing a context

switch when a process blocks for I/O.

• It is also possible that a context switch happens when a process' quantum expires.

Space Sharing

• The other general approach to multiprocessor scheduling can be used when threads are

related to one another in some way.

• Scheduling multiple threads at the same time across multiple CPUs is called space

sharing.

• At any instant of time, the set of CPUs is statically partitioned into some number of

partitions, each one running the threads of one process. In Fig , we have partitions of

sizes 4, 6, 8, and 12 CPUs, with 2 CPUs unassigned, for example. As time goes on, the

number and size of the partitions will change as new threads are created and old ones

finish and terminate.

Operating System Prof. Sujata Rizal

Gang Scheduling:-

• A clear advantage of space sharing is the elimination of multiprogramming, which

eliminates the context-switching overhead. However, an equally clear disadvantage is

the time wasted when a CPU blocks and has nothing at all to do until it becomes ready

again. Consequently, people have looked for algorithms that attempt to schedule in

both time and space together, especially for threads that create multiple threads, which

usually need to communicate with one another.

• To see the kind of problem that can occur when the threads of a process are

independently scheduled, consider a system with threads A0 and A1 belonging to

process A and threads B0 and B1 belonging to process B. Threads A0 and B0 are

timeshared on CPU 0; threads A1 and B1 are timeshared on CPU 1. Threads A0 and A1

need to communicate often. The communication pattern is that A0 sends A1 a message,

with A1 then sending back a reply to A0, followed by another such sequence, common

in client-server situations.

The solution to this problem is gang scheduling, which is an outgrowth of coscheduling

(Ousterhout, 1982). Gang scheduling has three parts:

• 1. Groups of related threads are scheduled as a unit, a gang.

• 2. All members of a gang run at once on different timeshared CPUs.

• 3. All gang members start and end their time slices together.

Operating System Prof. Sujata Rizal

MULTICOMPUTERS

• Multiprocessors are popular and attractive because they offer a simple communication

model: all CPUs share a common memory. Processes can write messages to memory

that can then be read by other processes. Synchronization can be done using mutexes,

semaphores, monitors, and other well-established techniques.

• To get around these problems, much research has been done on multicomputer, which

are tightly coupled CPUs that do not share memory. Each one has its own memory.

• These systems are also known by a variety of other names, including cluster computers

and COWS (Clusters Of Workstations).

• Cloud computing services are always built on multicomputer because they need to be

large.

• Multicomputer are easy to build because the basic component is just a stripped-down

PC, without a keyboard, mouse, or monitor, but with a high-performance network

interface card.

Multicomputer Hardware:-

• The basic node of a multicomputer consists of a CPU, memory, a network interface, and

sometimes a hard disk. The node may be packaged in a standard PC case, but the

monitor, keyboard, and mouse are nearly always absent. Sometimes this configuration

is called a headless workstation because there is no user with a head in front of it. A

workstation with a human user should logically be called a ‘‘headed workstation,’’ but

for some reason it is not.

Operating System Prof. Sujata Rizal

Interconnection Technology:-

Each node has a network interface card with one or two cables (or fibers) coming out of it.

These cables connect either to other nodes or to switches. In a small system, there may be one

switch to which all the nodes are connected in the star topology of Fig. Modern switched

Ethernets use this topology.

• As an alternative to the single-switch design, the nodes may form a ring, with two wires

coming out the network interface card, one into the node on the left and one going into

the node on the right, as shown in Fig. In this topology, no switches are needed and

none are shown.

• The grid or mesh is a two-dimensional design that has been used in many commercial

systems. It is highly regular and easy to scale up to large sizes. It has a diameter, which is

the longest path between any two nodes, and which increases only as the square root of

the number of nodes. A variant on the grid is the double torus of Fig. which is a grid

with the edges connected.

• Not only is it more fault tolerant than the grid, but the diameter is also less because the

opposite corners can now communicate in only two hops.

• The cube of Fig. is a regular three-dimensional topology. We have illustrated a 2 × 2 × 2

cube, but in the most general case it could be a k × k × k cube.

• To go to six dimensions, we could replicate the block of four cubes and interconnect the

corresponding nodes, and so on. An n-dimensional cube formed this way is called a

hypercube.

Operating System Prof. Sujata Rizal

Network Interfaces:-

• All the nodes in a multicomputer have a plug-in board containing the node’s connection

to the interconnection network that holds the multicomputer together.

• The way these boards are built and how they connect to the main CPU and RAM have

substantial implications for the operating system.

• In virtually all multicomputers, the interface board contains substantial RAM for holding
outgoing and incoming packets. Usually, an outgoing packet has to be copied to the
interface board’s RAM before it can be transmitted to the first switch.

• The reason for this design is that many interconnection networks are synchronous, so
that once a packet transmission has started, the bits must continue flowing at a
constant rate. If the packet is in the main RAM, this continuous flow out onto the
network cannot be guaranteed due to other traffic on the memory bus. Using a
dedicated RAM on the interface board eliminates this problem. This design is shown in
Fig.

 The same problem occurs with incoming packets. The bits arrive from the network at a
constant and often extremely high rate. If the network interface board cannot store
them in real time as they arrive, data will be lost.

Low-Level Communication Software:-

 The enemy of high-performance communication in multicomputer systems is excess
copying of packets. In the best case, there will be one copy from RAM to the interface
board at the source node, one copy from the source interface board to the destination
interface board (if no storing and forwarding along the path occurs), and one copy from
there to the destination RAM, a total of three copies. However, in many systems it is
even worse. In particular, if the interface board is mapped into kernel virtual address
space and not user virtual address space, a user processcan send a packet only by
issuing a system call that traps to the kernel. The kernels may have to copy the packets
to their own memory both on output and on input, for example, to avoid page faults

Operating System Prof. Sujata Rizal

while transmitting over the network. Also, the receiving kernel probably does not know
where to put incoming packets until it has had a chance to examine them.

 While this approach definitely helps performance, it introduces two problems. First,
what if several processes are running on the node and need network access to send
packets? Which one gets the interface board in its address space? Having a system call
to map the board in and out of a virtual address space is expensive, but if only one
process gets the board, how do the other ones send packets? And what happens if the
board is mapped into process A’s virtual address space and a packet arrives for process
B, especially if A and B have different owners, neither of whom wants to put in any
effort to help the other? The second problem is that the kernel may well need access to
the interconnection network itself, for example, to access the file system on a remote
node.

Node-to-Network Interface Communication:-

 Another issue is how to get packets onto the interface board. The fastest way is to use
the DMA chip on the board to just copy them in from RAM. The problem with this
approach is that DMA may use physical rather than virtual addresses and runs
independently of the CPU, unless an I/O MMU is present. To start with, although a user
process certainly knows the virtual address of any packet it wants to send, it generally
does not know the physical address. Making a system call to do the virtual-to-physical
mapping is undesirable, since the point of putting the interface board in user space in
the first place was to avoid having to make a system call for each packet to be sent.

Remote Direct Memory Access:-

 Remote Direct Memory Access (RDMA) is a technology that allows computers in a
network to exchange data in main memory without involving the processor, cache, or
operating system of either computer. Like locally-based Direct Memory Access (DMA),
RDMA improves throughput and performance because it frees up resources. RDMA also
facilitates a faster data transfer rate. RDMA implements a transport protocol in the
network interface card (NIC) hardware and supports a feature called zero-copy
networking. Zero-copy networking makes it possible to read data directly from the main

http://searchcio-midmarket.techtarget.com/definition/processor
http://searchstorage.techtarget.com/definition/cache
http://searchcio-midmarket.techtarget.com/definition/Direct-Memory-Access
http://searchcio-midmarket.techtarget.com/definition/throughput
http://whatis.techtarget.com/definition/performance
http://searchunifiedcommunications.techtarget.com/definition/data-transfer-rate
http://searchnetworking.techtarget.com/definition/network-interface-card

Operating System Prof. Sujata Rizal

memory of one computer and write that data directly to the main memory of the other
computer. RDMA has proven useful in applications that involve high-speed clusters
and data center networks.

User-Level Communication Software:-

 Processes on different CPUs on a multicomputer communicate by sending messages to
one another. In the simplest form, this message passing is exposed to the user
processes. In other words, the operating system provides a way to send and receive
messages, and library procedures make these underlying calls available to user
processes. In a more sophisticated form, the actual message passing is hidden from
users by making remote communication look like a procedure call.

Send and Receive:-

 At the barest minimum, the communication services provided can be reduced to two
(library) calls, one for sending messages and one for receiving them. The call for sending
a message might be

send(dest, &mptr);

and the call for receiving a message might be

receive(addr, &mptr);

 The former sends the message pointed to by mptr to a process identified by dest and
causes the called to be blocked until the message has been sent. The latter causes the
called to be blocked until a message arrives. When one does, the message is copied to
the buffer pointed to by mptr and the called is unblocked. The addr parameter specifies
the address to which the receiver is listening. Many variants of these two procedures
and their parameters are possible.

Blocking versus Nonblocking Calls:-

 The calls described above are blocking calls (sometimes called synchronous calls). When
a process calls send, it specifies a destination and a buffer to send to that destination.
While the message is being sent, the sending process is blocked (i.e., suspended). The
instruction following the call to send is not executed until the message has been
completely sent, as shown in Fig. Similarly, a call to receive does not return control until
a message has actually been received and put in the message buffer pointed to by the
parameter. The process remains suspended in receive until a message arrives, even if it
takes hours. In some systems, the receiver can specify from whom it wishes to receive,
in which case it remains blocked until a message from that sender arrives.

http://searchexchange.techtarget.com/definition/cluster
http://searchdatacenter.techtarget.com/definition/data-center

Operating System Prof. Sujata Rizal

 An alternative to blocking calls is the use of nonblocking calls (sometimes called
asynchronous calls). If send is nonblocking, it returns control to the called immediately,
before the message is sent. The advantage of this scheme is that the sending process
can continue computing in parallel with the message transmission, instead of having the
CPU go idle (assuming no other process is runnable).

Remote Procedure Call:-

 Remote Procedure Call (RPC) is a protocol that one program can use to request a service
from a program located in another computer in a network without having to understand
network details. (A procedure call is also sometimes known as a function call or
a subroutine call.) RPC uses the client/server model. The requesting program is a client
and the service-providing program is the server. Like a regular or local procedure call, an
RPC is a synchronous operation requiring the requesting program to be suspended until
the results of the remote procedure are returned. However, the use of lightweight
processes or threads that share the same address space allows multiple RPCs to be
performed concurrently.

 When program statements that use RPC are compiled into an executable program,
a stub is included in the compiled code that acts as the representative of the remote
procedure code. When the program is run and the procedure call is issued, the stub
receives the request and forwards it to a client runtime program in the local computer.
The client runtime program has the knowledge of how to address the remote computer
and server application and sends the message across the network that requests the
remote procedure. Similarly, the server includes a runtime program and stub that
interface with the remote procedure itself. Results are returned the same way.

 The actual steps in making an RPC are shown in Fig. Step 1 is the client calling the client
stub. This call is a local procedure call, with the parameters pushed onto the stack in the
normal way. Step 2 is the client stub packing the parameters into a message and making

http://searchnetworking.techtarget.com/definition/protocol
http://searchnetworking.techtarget.com/definition/client-server
http://searchcio-midmarket.techtarget.com/definition/synchronous
http://searchcio-midmarket.techtarget.com/definition/thread
http://whatis.techtarget.com/definition/stub
http://searchsoftwarequality.techtarget.com/definition/runtime

Operating System Prof. Sujata Rizal

a system call to send the message. Packing the parameters is called marshalling. Step 3
is the kernel sending the message from the client machine to the server machine. Step 4
is the kernel passing the incoming packet to the server stub (which would normally have
called receive earlier). Finally, step 5 is the server stub calling the server procedure. The
reply traces the same path in the other direction.

Implementation Issues:-

• Cannot pass pointers
– call by reference becomes copy-restore (but might fail)

• Weakly typed languages
– client stub cannot determine size

• Not always possible to determine parameter types
• Cannot use global variables

– may get moved to remote machine

Distributed Shared Memory:-

Distributed shared memory (DSM) is a form of memory architecture where the (physically
separate) memories can be addressed as one (logically shared) address space. Here, the term
"shared" does not mean that there is a single centralized memory but "shared" essentially
means that the address space is shared (same physical address on two processors refers to the
same location in memory).

The difference between actual shared memory and DSM is illustrated in Fig. 8-21. In Fig. 8-
21(a), we see a true multiprocessor with physical shared memory implemented by the
hardware. In Fig. 8-21(b), we see DSM, implemented by the operating system. In Fig. 8-21(c),
we see yet another form of shared memory,
implemented by yet higher levels of software.

Operating System Prof. Sujata Rizal

Let us now look in some detail at how DSM works. In a DSM system, the address space is
divided up into pages, with the pages being spread over all the nodes in the system. When a
CPU references an address that is not local, a trap occurs, and the DSM software fetches the
page containing the address and restarts the faulting instruction, which now completes
successfully. This concept is illustrated in Fig. 8-22(a) for an address space with 16 pages and
four nodes, each capable of holding six pages.

Operating System Prof. Sujata Rizal

Replication

 One improvement to the basic system that can improve performance considerably is to
replicate pages that are read only, for example, program text, read-only constants, or
other read-only data structures.

 Another possibility is to replicate not only read-only pages, but also all pages. As long as
reads are being done, there is effectively no difference between replicating a read-only
page and replicating a read-write page.

False Sharing

 False sharing is a term which applies when threads unwittingly impact the performance
of each other while modifying independent variables sharing the same cache line. Write
contention on cache lines is the single most limiting factor on achieving scalability for
parallel threads of execution in an SMP system.

 On the other hand, the network will be tied up longer with a larger transfer, blocking
other faults caused by other processes. Also, too large an effective page size introduces
a new problem, called false sharing, illustrated in Fig. 8-23. Here we have a page
containing two unrelated shared variables, A and B. Processor 1makes heavy use of A,
reading and writing it. Similarly, process 2 uses B frequently. Under these circumstances,
the page containing both variables will constantly be traveling back and forth between
the two machines.

Achieving Sequential Consistency:-

If writable pages are not replicated, achieving consistency is not an issue. There is exactly one
copy of each writable page, and it is moved back and forth dynamicallyas needed. Since it is not
always possible to see in advance which pages are writable, in many DSM systems, when a
process tries to read a remote page, local copy is made and both the local and remote copies
are set up in their respective MMus as read only. As long as all references are reads, everything
is fine.

Operating System Prof. Sujata Rizal

Multicomputer Scheduling:-

On a multiprocessor, all processes reside in the same memory. When a CPU finishes its current
task, it picks a process and runs it. In principle, all processes are potential candidates. On a
multicomputer the situation is quite different. Each node has its own memory and its own set
of processes. CPU 1 cannot suddenly decide to run a process located on node 4 without first
doing a fair amount of work to go get it. This difference means that scheduling on
multicomputers is easier but allocation of processes to nodes is more important. Below we will
study these issues.

Load Balancing:-

There is relatively little to say about multicomputer scheduling because once a process has
been assigned to a node, any local scheduling algorithm will do, unless gang scheduling is being
used. However, precisely because there is so little control once a process has been assigned to
a node, the decision about which process should go on which node is important. This is in
contrast to multiprocessor systems, in which all processes live in the same memory and can be
scheduled on any CPU at will. Consequently, it is worth looking at how processes can be
assigned to nodes in an effective way. The algorithms and heuristics for doing this assignment
are known as processor allocation algorithms.

A Graph-Theoretic Deterministic Algorithm

The system can be represented as a weighted graph, with each vertex being a process and each
arc representing the flow of messages between two processes. Mathematically, the problem
then reduces to finding a way to partition (i.e., cut) the graph into k disjoint subgraphs, subject
to certain constraints (e.g., total CPU and memory requirements below some limits for each
subgraph). For each solution that meets the constraints, arcs that are entirely within a single
subgraph represent intra machine communication and can be ignored. Arcs that go from one
subgraph to another represent network traffic. The goal is then to find the partitioning that
minimizes the network traffic while meeting all the constraints. As an example, Fig. 8-24 shows
a system of nine processes, A through I , with each arc labeled with the mean communication
load between those two processes (e.g., in Mbps).

Operating System Prof. Sujata Rizal

A Sender-Initiated Distributed Heuristic Algorithm

One algorithm says that when a process is created, it runs on the node that created it unless
that node is overloaded. The metric for overloaded might involve too many processes, too big a
total working set, or some other metric. If it is overloaded, the node selects another node at
random and asks it what its load is (using the same metric).

A Receiver-Initiated Distributed Heuristic Algorithm

A complementary algorithm to the one discussed above, which is initiated by an overloaded
sender, is one initiated by an under loaded receiver, as shown in Fig. 8-25(b). With this
algorithm, whenever a process finishes, the system checks to see if it has enough work. If not, it
picks some machine at random and asks it for work. If that machine has nothing to offer, a
second, and then a third machine is asked. If no work is found with N probes, the node
temporarily stops asking, does any work it has queued up, and tries again when the next
process finishes. If no work is available, the machine goes idle.

DISTRIBUTED SYSTEMS

These systems are similar to multicomputers in that each node has its own private memory,
with no shared physical memory in the system. However, distributed systems are even more
loosely coupled than multicomputers. To start with, each node of a multicomputer generally
has a CPU, RAM, a network interface, and possibly a disk for paging. In contrast, each node in a
distributed system is a complete computer, with a full complement of peripherals. Next, the
nodes of a multicomputer are normally in a single room, so they can communicate by a
dedicated high-speed network, whereas the nodes of a distributed system may be spread
around the world. Finally, all the nodes of a multicomputer run the same operating system,
share a single file system, and are under a common administration, whereas the nodes of a
distributed system may each run a different operating system, each of which has its own file
system, and be under a different administration.

Operating System Prof. Sujata Rizal

Network Hardware

Distributed systems are built on top of computer networks, so a brief introduction to the
subject is in order. Networks come in two major varieties, LANs (Local Area Networks), which
cover a building or a campus, and WANs (Wide Area Networks), which can be citywide,
countrywide, or worldwide. The most important kind of LAN is Ethernet, so we will examine
that as an example LAN. As our example WAN, we will look at the Internet, even though
technically the Internet is not one network, but a federation of thousands of separate
networks.

Ethernet

In the very first version of Ethernet, a computer was attached to the cable by literally drilling a
hole halfway through the cable and screwing in a wire leading to the computer. This was called
a vampire tap, and is illustrated symbolically in Fig. 8-28(a). The taps were hard to get right, so
before long, proper connectors were used. Nevertheless, electrically, all the computers were
connected as if the cables on their network interface cards were soldered together.

Operating System Prof. Sujata Rizal

The Internet

The Internet consists of two kinds of computers, hosts and routers. Hosts are PCs, notebooks,
handhelds, servers, mainframes, and other computers owned by individuals or companies that
want to connect to the Internet. Routers are specialized switching computers that accept
incoming packets on one of many incoming lines and send them on their way along one of
many outgoing lines. A router is similar to the switch of Fig. 8-28(b), but also differs from it in
ways that will not concern us here. Routers are connected together in large networks, with
each router having wires or fibers to many other routers and hosts. Large national or worldwide
router networks are operated by telephone companies and ISPs (Internet Service Providers) for
their customers.

Figure 8-29 shows a portion of the Internet. At the top we have one of the backbones, normally
operated by a backbone operator. It consists of a number of routers connected by high-
bandwidth fiber optics, with connections to backbones operated by other (competing)
telephone companies. Usually, no hosts connect directly to the backbone, other than
maintenance and test machines run by the telephone company.
Attached to the backbone routers by medium-speed fiber optic connections are regional
networks and routers at ISPs. In turn, corporate Ethernets each have a router on them and
these are connected to regional network routers. Routers at ISPs are connected to modem
banks used by the ISP’s customers. In this way, eve very host on the Internet has at least one
path, and often many paths, to every other host.

Operating System Prof. Sujata Rizal

Network Services and Protocols

All computer networks provide certain services to their users (hosts and processes), which they
implement using certain rules about legal message exchanges. Below we will give a brief
introduction to these topics.

Network Services

Computer networks provide services to the hosts and processes using them. Connection-
oriented service is modeled after the telephone system. To talk to someone, you pick up the
phone, dial the number, talk, and then hang up. Similarly, to use a connection-oriented network
service, the service user first establishes a connection, uses the connection, and then releases
the connection. The essential aspect of a connection is that it acts like a tube: the sender
pushes objects (bits) in at one end, and the receiver takes them out in the same order at the
other end. In contrast, connectionless service is modeled after the postal system. Each
message (letter) carries the full destination address, and each one is routed through the system
independent of all the others. Normally, when two messages are sent to the same destination,
the first one sent will be the first one to arrive. Howe err, it is possible that the first one sent
can be delayed so that the second one arrives first. With a connection-oriented service this is
impossible.

Operating System Prof. Sujata Rizal

Network Protocols

The set of rules by which particular computers communicate is called a protocol. Since most
distributed systems use the Internet as a base, the key protocols these systems use are the two
major Internet protocols: IP and TCP. IP (Internet Protocol) is a datagram protocol in which a
sender injects a datagram of up to 64 KB into the network and hopes that it arrives. No
guarantees are given. The datagram may be fragmented into smaller packets as it passes
through the Internet. These packets travel independently, possibly along different routes.

DNS names are commonly known because Internet email addresses are of the form user-
name@DNS-host-name. This naming system allows the mail program on the sending host to
look up the destination host’s IP address in the DNS database, establish a TCP connection to the
mail daemon process there, and send the message as a file. The user-name is sent along to
identify which mailbox to put the message in.

Document-Based Middleware

The original paradigm behind the Web was quite simple: every computer can hold one or more
documents, called Web pages. Each Web page contains text, images, icons, sounds, movies,
and the like, as well as hyperlinks (pointers) to other Web pages. When a user requests a Web
page using a program called a Web browser, the page is displayed on the screen. Clicking on a

Operating System Prof. Sujata Rizal

link causes the current page to be replaced on the screen by the page pointed to. Although
many bells and whistles have recently been grafted onto the Web, the underlying paradigm is
still clearly present: the Web is a great big directed graph of documents that can point to other
documents, as shown in Fig. 8-32.

Each Web page has a unique address, called a URL (Uniform Resource Locator), of the form
protocol://DNS-name/file-name. The protocol is most commonly http (Hypertext Transfer
Protocol), but ftp and others also exist. Then comes the DNS name of the host containing the
file. Finally, there is a local file name telling which file is needed. Thus a URL uniquely specifies a
single file worldwide

As a simple example, suppose the URL provided is http://www.minix3.org/getting-
started/index.html. The browser then takes the following steps to get the page.

1. The browser asks DNS for the IP address of www.minix3.org.
2. DNS replies with 66.147.238.215.
3. The browser makes a TCP connection to port 80 on 66.147.238.215.
4. It then sends a request asking for the file getting-started/index.html.
5. The www.minix3.org server sends the file getting-started/index.html.
6. The browser displays all the text in getting-started/index.html.
7. Meanwhile, the browser fetches and displays all images on the page.
8. The TCP connection is released.

File-System-Based Middleware

The basic idea behind the Web is to make a distributed system look like a giant collection of
hyperlinked documents. A second approach is to make a distributed system look like a great big
file system. In this section we will look at some of the issues involved in designing a worldwide
file system.

