
Syllabus

F.Y.B.Sc. (IT) Semester - II

Subject : Web designing and Programming

Unit - I Internet and WWW : What is Internet?,
Introduction to internet and its applications, E-
mail, telnet, FTP, e-commerce, video
conferencing, e-business. Internet service
providers, domain name server, internet address
World Wide Web (WWW) : World Wide Web and
its evolution, uniform resource locator (URL),
browsers - internet explorer, netscape navigator,
opera, firefox, chrome, mozilla. Search engine,
web saver - apache, IIS, proxy server, HTTP
protocol.

8
lectures

Unit - II HTML and Graphics : HTML Tag Reference,
Global Attributes, Event Handlers, Document
Structure Tags, Formatting Tags, Text Level
formatting, Block Level formatting, List Tags,
Hyperlink tags, Image and Image maps, Table
tags, Form Tags, Frame Tags, Executable content
tags.

Imagemaps : What are Imagemaps? Client-side
Imagemaps, Server-side Imagemaps, Using
Server-side and Client-side Imagempas together,
alternative text for Imagemaps,

Tables : Introduction to HTML tables and their
structure, The table tags, Alignment, Aligning
Entire Table, Alignment within a row, Alignment
within a cell, Attributes, Content Summary,
Background color, Adding a Caption, Setting the
width, Adding a border, Spacing within a cell,
Spacing between the cells, spanning multiple rows
or columns, Elements that can be placed in a table,
Table Sections and column properties, Tables as a
design tool

F.Y.B.Sc. (IT) Semester - II

Frames : Introduction to Frames, Applications,
Frames document, The <FRAMESET> tag,
Nesting <FRAMESET> tag, Placing content in
frames with the <FRAME> tag, Targeting named
frames, Creating floating frames, Using Hidden
frames,

8
lectures

Forms : Creating Forms, The <FORM> tag,
Named Input fields, The <INPUT> tag, Multiple
lines text windows, Drop down and list boxes,
Hidden, Text, Text Area, Password, File Upload,
Button, Submit, Reset, Radio, Checkbox, Select,
Option, Forms and Scripting, Action Buttons,
Labelling input files, Grouping related fields,
Disabled and read-only fields, Form field event
handlers, Passing form data

Style Sheets : What are style sheets?, Why are
style sheets valuable? Different approaches to
style sheets, Using Multiple approaches, Linking
to style information in s separate file, Setting up
style information, Using the <LINK> tag,
embedded style information, Using <STYLE> tag,
Inline style information

Unit -
III

Java Script : Introduction, Client-Side JavaScript,
Server-Side JavaScript, JavaScript Objects,
JavaScript Security,

Operators : Assignment Operators, Comparison
Operators, Arithmetic Operators, % (Modulus), ++
(Increment), -- (Decrement), -(Unary Negation),
Logical Operators, Short-Circuit Evaluation,
String Operators, Special Operators, ?
(Conditional operator), ,(Comma operator), delete,
new, this, void

Statements : Break, comment, continue, delete,
do … while, export, for, for…in, function,
if…else, import, labelled, return, switch, var,
while, with,

Core JavaScript (Properties and Methods of
Each) : Array, Boolean, Date, Function, Math,
Number, Object, String, regExp

Document and its associated objects : document,
Link, Area, Anchor, Image, Applet, Layer

Events and Event Handlers : General
Information about Events, Defining Event
Handlers, event, onAbort, onBlur, onChange,
onClick, onDblClick, onDragDrop, onError,
onFocus, onKeyDown, onKeyPress, onKeyUp,
onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp,
onMove, onReset, onResize, onSelect, onSubmit,
onUnload

8
lectures

Unit- IV XML : Introduction to XML, Anatomy of an
XML, document, Creating XML Documents,
Creating XML DTDs, XML Schemas, XSL

8
lectures

Unit-V PHP : Why PHP and MySQL?, Server-side web
scripting, Installing PHP, Adding PHP to HTML,
Syntax and Variables, Passing information
between pages, Strings, Arrays and Array
Functions, Numbers, Basic PHP errors / problems.

8
lectures

Unit-VI Advanced PHP and MySQL : PHP/MySQL
Functions, Displaying queries in tables, Building
Forms from queries, String and Regular
Expressions, Sessions, Cookies and HTTP, Type
and Type Conversions, E-Mail

8
lectures

Reference :

1. Web Design The complete Reference, Thomas Powell, Tata
McGrawHill

2. HTML and XHTML The complete Reference, Thomas Powell,
Tata McGrawHill

3. JavaScript 2.0 : The Complete Reference, Second Edition by
Thomas Powell and Fritz Schneider

4. PHP : The Complete Reference By Steven Holzner, Tata
McGrawHill

Term Work for USIT201

i) Assignments : Should contain at least 2 assignments covering the
Syllabus.

ii) Class Tests : One. Also Known as Unit Test or In-Semester
Examinations

iii) Tutorial : Minimum Three tutorials covering the syllabus

Practicals (USIT2P1) :

Journal Practical 3 lectures per Week (1 Credit)

List of Practical

1. Design a web page using different text formatting tags.

2. Design a web page with links to different pages and allow
navigation between pages.

3. Design a web page with Imagemaps.

4. design a web page with different tables. Design a webpage suing
table so that the content appears well placed.

5. Design a webpage using frames.

6. Design a web page with a form that uses all types of controls.

7. Design a website using style sheets so that the pages have uniform
style.

8. Using Java Script design a web page that prints factorial / Fibonacci
series / any given series.

9. Design a form with a test box and a command button. Using Java
Script write a program whether the number entered in the text box is
a prime number or not.

10. Design a form and validate all the controls placed on the form using
Java Script.

11. Design a DTD, corresponding XML document and display it in
browser using CSS.

12. Design an XML document and display it in browser using XSL.

13. Design XML Schema and corresponding XML document.



1

INTERNET AND WWW

Unit Structure
1.0 Objective

1.1 Introduction to internet and its applications.

1.1.1 E mail

1.1.2 Telnet

1.1.3 FTP

1.1.4 E–commerce

1.1.5 Video conferencing

1.1.6 E business.

1.2 Internet service providers

1.3 Domain name servers

1.4 Internet address

1.5 World wide web and its evolution

1.6 URL
1.7 Browsers

1.7.1 Internet explorer,

1.7.2 netscape navigator,

1.7.3 opera,

1.7.4 firefox,

1.7.5 chrome,

1.7.6 Mozilla,

1.8 Search Engine

1.9 Web server

1.9.1 Apache

1.9.2 IIS

1.9.3 Proxy Server

1.10 HTTP protocol.

1.11 Summery

1.12 Unit End exercise

2

1.0 OBJECTIVE:

After reading through this chapter, you will be able to –
 Understand concept of Internet and world wide web, their

applications.

 List the services provided by Internet Service providers with
examples.

 Define domain name server and list various domains.

 Understand the concept of Internet address.

 Understand the function of a URL and web browsers.

 Use different web browsers.

 Use the search engines to search for required information over the
internet.

 Understand the need and use of a web server and proxy server.

1.1 INTRODUCTION TO INTERNET AND ITS
APPLICATIONS

Internet is ---

 A computer network consisting of a worldwide network of computers
that use the TCP/IP network protocols to facilitate data transmission
and exchange.

 The Internet is a global system of interconnected computer networks
that use the standard Internet Protocol Suite (TCP/IP) to serve billions
of users worldwide.

 The term Internet actually refers to the combined collection of
academic, commercial, and government networks connected over
international telecommunication backbones and routed using IP
addressing.

The internet has gained popularity rapidly as it is used for various
purposes. Few of the main applications of internet are listed below –

Applications of Internet ---

1.1.1 E mail (Electronic mail)

 Electronic mail (also known as email or e-mail) is one of the most
commonly used services on the Internet, allowing people to send
messages to one or more recipients.

3

 Email was invented by Ray Tomlinson in 1972.

 Electronic mail is a method of exchanging digital messages from
an author to one or more recipients.

 Modern email operates across the Internet or other computer
networks. Today's email systems are based on a store-and-forward
model.

 Email servers accept, forward, deliver and store messages. Neither
the users nor their computers are required to be online
simultaneously; they need connect only briefly, typically to an
email server, for as long as it takes to send or receive messages.

 An email message consists of three components, the message
envelope, the message header, and the message body.

 Header contains information about who sent the message, the
recipient(s) and the route.

 Header also usually contains descriptive information, such as a
subject header field and a message submission date/time stamp.

 Email message body contains text (7bit ASCII) as well as
multimedia messages. These processes are declared in
Multipurpose Internet Mail Extensions (MIME). MIME is set of
RFCs (Request for Comment)

 Network based emails are exchanged over the internet using the
SMTP (Simple Mail Transfer protocol).

 In the process of transporting email messages between systems,
SMTP communicates delivery parameters using a message
envelope separate from the message (header and body) itself.

 Email addresses (both for senders and recipients) are two strings
separated by the character "@" (the "at sign"): such as
user@domain

 The right-hand part describes the domain name involved, and the
left-hand part refers to the user who belongs to that domain.

 An email address can be up to 255 characters long and can include
the following characters:
 Lowercase letters from a to z;
 Digits
 The characters ".","_" and "-" (full stop, underscore, and

hyphen)
In practice, an email address often looks something like this:
fname.lname@provider.domain

4

1.1.2 telnet

 Telnet is a network protocol used in any network (internet or LAN)
for bidirectional text oriented communication.

 telnet standard was defined in 1973, before which it was
considered as adhoc protocol.

 Original purpose of the telnet protocol was to login to the remote
computers on the network.

 telnet protocol uses ‘virtual terminal’ to connect to the remote
hosts.

 Virtual terminal is a application service that allows host in a multi
terminal network to communicate with other hosts irrespective of
terminal type or characteristics.

 Telnet uses the TCP protocol for transmission of 8 byte data.

 Most network equipment and operating systems with a TCP/IP
stack support a Telnet service for remote configuration (including
systems based on Windows NT)

 The term telnet may also refer to the software that implements the
client part of the protocol.

 telnet is a client server protocol, which is based upon reliable
connection oriented communication transport and basic use of
telnet is to make a connection to the TCP protocol.

 Data transferred over telnet is vulnerable as telnet does not use any
encryption technique to mask or protect the data.

 Most implementations of Telnet have no authentication that would
ensure communication is carried out between the two desired hosts
and not intercepted in the middle.

 Commonly used Telnet daemons have several vulnerabilities
discovered over the years.

 Extensions to the Telnet protocol provide Transport Layer Security
(TLS) security and Simple Authentication and Security Layer
(SASL) authentication that address the above issues.

 Few applications of telnet include the ‘putty’ TCP client which can
access a linux server using windows operating system, Absolute
telnet (windows client) and RUMBA (terminal emulator).

1.1.3 FTP

 File transfer protocol is a simple and standard network protocols
that transfers a file from one host to the other over a TCP network.

 Based on client server architecture.

5

 Utilizes separate control and data connection for client and server
to transmit and receive file(s) over the network.

 It is an application protocol that uses the internet’s TCP/IP suite.

 Mainly used to transfer the web pages or related data from the
source or creator to a host that acts as a server to make the page or
file available to other hosts (uploading) or downloading programs
and other files from server to a host.

 FTP protocol can perform over a active or passive connection.

 When a connection is made from the client to server, it is called as
control connection and it remains open for duration of session.
This connection is responsible for establishing connectivity
between client and server.

 Other connection opened by client (passive) or server (active) is
called data connection and is used to transfer the data.

 As separate ports are used by client and server for these
connections, FTP becomes an put of band protocol.

 Data transfer can take place in following three modes

 Stream mode : data is sent in a continuous stream where FTP
does not do any formatting.

 Block mode: FTP breaks the data into several blocks (block
header, byte count, and data field) and then passes it on to
TCP.

 Compressed mode: Data is compressed using a single
algorithm.

 FTP is a old protocol and is basically low in security aspect. Data
transferred over FTP is not encrypted and is in clear text format.
Hence the data like usernames, passwords can be read by anyone
who can capture the FTPed package. Newer versions of the
protocol, however, apply secure shell protocol (SSH) and avoid all
the problems faced by FTP.

 Following are few types of FTP protocol with additional features

 Anonymous FTP : Users login using an ‘anonymous’ account
to protect their confidential data.

 Remote FTP: FTP commands executed on a remote FTP server
 FTP with web browser and firewall support.
 Secure FTP (SFTP, FTPS)

1.1.4 E Commerce

 Electronic commerce can be defined as use of electronic
communications, particularly via the internet, to facilitate the
purchase/sale of goods and services. E-commerce includes all

6

forms of electronic trading including electronic data interchange
(EDI), electronic banking, electronic mail and other online
services.

 E transactions are of two categories. – virtual products like policies
and actual retail products.

 Most of e transactions of actual products involve physical
transportation of goods which are purchased over the electronic
media.

 Online retailing has gained a name of E tailing.

 Electronic commerce is generally considered to be the sales aspect
of e-business. It also consists of the exchange of data to facilitate
the financing and payment aspects of the business transactions.

 Originally, electronic commerce was identified as the facilitation
of commercial transactions electronically, using technology such
as Electronic Data Interchange (EDI) and Electronic Funds
Transfer (EFT).

 Other forms of e commerce were established with the growth and
use of credit cards, and air line reservation system going online.

 Electronic commerce of the modern era (post 1990) includes
technologies like enterprise resource planning (ERP), data
warehousing and data mining.

 The electronic transactions between two businesses like dealer and
wholesaler or wholesaler and retailer come in the B2B (business to
business) E commerce category.

 Other popular E commerce categories would be business to
consumer (B2C) and business to government (B2G)

 Volume of B2B transaction is much higher as compared to the
volume of B2C transactions. Reason for this is, many transactions
at B2B level lead to finished good and this leads to just one B2C
transaction.

 In an example, if a customer buys a product, say a pen, that would
be a B2C transaction. But the transaction leading this one,
including purchase of plastic, ink, refill, moulds etc would be B2B
transaction. Also the sale of the pen to the retailer by the
manufacturing company, like cello, is B2B transaction.

 Other form of B2C transactions are business to individual, where
the record of an individual’s transaction is maintained.

 C2C is consumer to consumer, or citizen to citizen E commerce.
Here customers can perform transaction via a third party. Like a
product can be posted on amazon.com and will be sold to another
consumer through amazon.

7

 C2B E commerce model is reverse of traditional business to
consumer approach. This can be explained by a internet blog or a
social networking site where author can have a link in his blog
article to online sale of a product (promoting the business). This
has become possible due to advancements in technology and
reduced costs of technology.

 Unique attribute of e commerce is negotiation facility and its
immediate results. Also, in E commerce transactions, integration of
transactions is automated.

1.1.5 Video Conferencing

 Video conferencing or video teleconference is a set of
telecommunication technologies which allow one or more
locations to transmit and receive video and audio signals
simultaneously.

 This is known as visual collaboration.

 Simple analog video conferencing is achieved by two closed
circuit television systems connected with coaxial cables or radio
waves.

 This type of communication was established from 1968.

 Modern video conferencing is IP based and through more efficient
video compression technologies, allowing desktop or PC based
video conferencing.

 Videotelephony is now popular due to free internet services.

 Core technology used for this is compression of audio and video
signals. Hardware and software used for this task is called as codec
(coder/ decoder). Compression rate achieved is almost 1:500. The
resultant stream of binary data is sent in packet form through
digital networks.

 The components required for a videoconferencing system include:

o Video input : video camera or webcam

o Video output: computer monitor , television or projector

o Audio input: microphones, CD/DVD player, cassette player,
or any other source of PreAmp audio outlet.

o Audio output: usually loudspeakers associated with the
display device or telephone

o Data transfer: analog or digital telephone network, LAN or
Internet

 There are basically two types of videoconferencing systems.

8

o Dedicated systems: all required components (i.e. software and
hardware based codec, control computer and video camera,
electrical interfaces) packed in a single console application.
They include large group, small group, portable and non
portable video conferencing systems.

o Desktop Systems: add ons to normal computing systems
transforming these systems to videoconferencing devices.

 There are following layers in the videoconferencing technology –

o User interface

o Conference control

o Control or signal plane

o Media plane.

 Videoconferencing has following modes

o Voice activated switch

o Continuous presense

 Problems faced by videoconferencing

o Echo: echo is defined as reflected source wave interference
with new wave created by the source. i.e. signal coming out
from the source interferes with newly coming source and
generating unwanted input signal. This may result into remote
party receiving their own sounds again. This can be avoided
by using an algorithm called as AEC (Acoustic Echo
cancellation).

o Eye contact : in videoconferencing, due to time delays and
parallax, communicators have a feel of the other party
avoiding eye contact and can result into issues in professional
communication. This can be avoided by using special stereo
reconstruction technique.

o Signal latency: The information transport of digital signals in
many steps needs time. In a telecommunicated conversation,
an increased latency larger than about 150-300ms becomes
noticeable and is soon observed as unnatural and distracting.
Therefore, next to a stable large bandwidth, a small total
round-trip time is another major technical requirement for the
communication channel for interactive videoconferencing.

1.1.6 E business

 E business is conduct of business over the internet, which includes
buying and selling of goods and even services.

 In other words it is application of information and communication
technologies in support of all activities in business.

9

 Applications of E business are divided into following categories –
o Internal business systems --

 Customer Relationship Management (CRM)
 Enterprise Resource Planning (ERP)
 Human resource management system(HRMS)

o Enterprise Communication and collaboration
 Content management
 E- mails
 Voice mails
 Web conferencing

o Electronic commerce
 B2B (business to business)
 B2C (business to customer)
 B2E business-to-employee
 B2G business-to-government
 G2B government-to-business
 G2G (government-to-government)
 G2C (government-to-citizen)
 C2C (consumer-to-consumer)
 C2B (consumer-to-business)

 A business model is defined as the organization of product, service
and information flows, and the source of revenues and benefits for
suppliers and customers. The concept of e-business model is the
same but used in the online presence.

 Few e business models are –

o E-shops
o E-commerce
o E-procurement
o E-malls
o E-auctions
o Virtual Communities

 E business has more security risks as compared to a regular
business, as E business has many more users at a time. Keeping the
large information confidential is a difficult task. Also, data
integrity, authenticity and storage of data are some challenges
faced by E business.

 Some methods to provide security are physical security as well as
encryption in data storage, transmission, antivirus software and
firewalls. Digital signature is another way to confirm the
ownership of a document.

1.2 INTERNET SERVICE PROVIDER

 An Internet service provider (ISP) is a company that provides access to
the Internet, hosts data, or does both. ISP is also known as IAP

10

(internet access provider) Access ISPs connect customers to the
Internet using copper, wireless or fibre connections. Hosting ISPs
lease server space for smaller businesses and host other people servers
(colocation). Transit ISPs provide large tubes for connecting hosting
ISPs to access ISPs.

 As internet gained popularity, it was essential to provide internet
access to many people or many hosts. Due to the increasing demand to
access internet, commercial ISP came into existence in 1990.

Technologies used –
For users and small business applications -
 Dial up connection
 DSL (digital subscriber line)
 Broadband wireless connection
 Cable modem
 Fibre optical connection

For medium to large businesses or for other ISPs,
 DSL
 Ethernet
 Metro Ethernet
 Gigabyte Ethernet
 Frame relay
 Satellite Ethernet

 ISP connections –
ISPs which provide connections through phone lines like dial ups, do
not seek any information about the caller’s (user of the internet)
physical location or address. So, caller from any location which is in
reach of the ISP, can use the services provided.

Other way of getting connected through ISP is using cable or any
other lines. Here, fixed registration of the user at the ISP side is
essential.

 Services provided –

ISP host usually provide e mail, FTP and web hosting services. Other
services can be like virtual machines, clouds or entire physical servers
where clients can run their own softwares.

ISPs often take services from their upstream ISPs. i.e. they work in
hierarchy. The ISPs are divided into three categories –

 Peering : ISPs taking services from upstream and getting
connected to each other to exchange data and to control network
traffic through peering points, or internet exchange points. These

11

points help save one more upstream ISP and cut down on the cost.
The ISPs which do not need upstream ISP are called Tier 1 ISP.

 Virtual ISP (VISP) : this is an ISP which purchases services from
other ISP and gives them to the end user, without any set up of its
own.

 Free ISP: these are ISPs which provide services free of cost to the
users and display advertisements till the users are connected. These
are called as freenets. These are normally run on no profit basis.

1.3 DOMAIN NAME SERVERS

 Domain Name System is –
DNS is part of a domain name system. It is hierarchical naming

system built on a distributed database for resource connected to the
internet or a private network. The main purpose of this system is to
translate domain names meaningful to humans into names or rather
numeric streams which help the corresponding network devices to identify
the resource or domain. Domain name system makes it possible to give or
allot names to domains or group of networks irrespective of their physical
locations.

 Domain Name Server is –

 Domain name system assigns domain name servers for allotting names
and mapping these names to IP addresses. In other words domain
name servers are nodes of the domain name system which acts like a
client server system. Each domain has at least one authoritative DNS
server that publishes information about that domain and the name
servers of any domains subordinate to it. The top of the hierarchy is
served by the root nameservers, the servers to query when looking up
(resolving) a TLD (Top level domain). Authoritative DNS can either
be a master or a slave. Master DNS keeps record of all zone records.
Slave DNS uses a automatic update mechanism to maintain copies of
records of its master. Every top level domain requires a primary DNS
and at least one secondary DNS. Every DNS query must start with
recursive queries at the root zone, for authoritative DNS.

 To improve efficiency, reduce DNS traffic across the Internet, and
increase performance in end-user applications, the Domain Name
System supports DNS cache servers which store DNS query results for
a period of time determined in the configuration (time-to-live) of the
domain name record in question.

 The client-side of the DNS is called a DNS resolver. It is responsible
for initiating and sequencing the queries that ultimately lead to a full
resolution (translation) of the resource sought, e.g., translation of a
domain name into an IP address.

12

 A DNS query may be either a non-recursive query or a recursive query

 The resolver, or another DNS server acting recursively on behalf of the
resolver, egotiates use of recursive service using bits in the query
headers.

 Resolving usually entails iterating through several name servers to find
the needed information. However, some resolvers function
simplistically and can communicate only with a single name server.
These simple resolvers (called "stub resolvers") rely on a recursive
name server to perform the work of finding information for them.

 Operation of DNS –

 Domain name resolvers determine the appropriate domain name
servers responsible for the domain name in question by a sequence of
queries starting with the right-most (top-level) domain label.

 DNS recorsor consults three name servers to resolve one address. The
process is as follows –

o A network host is configured with an initial cache (so called hints)
of the known addresses of the root nameservers. Such a hint file is
updated periodically by an administrator from a reliable source.

o A query to one of the root servers to find the server authoritative
for the top-level domain.

o A query to the obtained TLD server for the address of a DNS
server authoritative for the second-level domain.

o Repetition of the previous step to process each domain name label
in sequence, until the final step which returns the IP address of the
host sought.

1.4 INTERNET ADDRESS

 Internet address follows the TCP/IP suite hence, it is also known as the
IP address.

 Internet address has a job of identifying a node on the network. In oher
words, it is a numeric lable attached to every system (computer or any
other device). The basic function of IP address are two –

 Identification of computer or node or device and location addressing.

 The designers of the Internet Protocol defined an IP address as a 32-bit
number[1] and this system, known as Internet Protocol Version 4
(IPv4), is still in use today. However, due to the enormous growth of
the Internet and the predicted depletion of available addresses, a new
addressing system (IPv6), using 128 bits for the address, was
developed in 1995,[3] standardized as RFC 2460 in 1998,[4] and is
being deployed worldwide since the mid-2000s.

13

 IP addresses are binary numbers, but they are usually stored in text
files and displayed in human-readable notations, such as 172.16.254.1
(for IPv4)

 IPV4 address is a 32 bit number, which uses the decimal doted
notation consisting of 4 decimal numbers each ranging from 0 to 255
separated by dots. Network administration divides the IP address into
two parts. – the most significant 8 bits are called network address
portion the remaining bits are known as rest bits or host bits or
identifiers and they are used for host numbering in a network.

 Although IPV4 provides 4.3 billion addresses, they are exhausted due
to high demand and as a result, insufficient addresses available with
IANA (Internet assigned numbers authority). The primary address
pool of IANA is expected to get exhausted by mid 2011. To
permanently address the problem, new version of IP i.e. IPV6 was
brought forward, this version moved the size of IP address from 32 bit
to 128 bits.

 Both IPV4 as well as IPV6 have reserved addresses for private or
internal networks. This is termed as private addressing.

 Both IPV4 and IPV6 have subnetting effect. That mean, IP networks
can be divided into smaller groups or subnets. IP addresses two
constituents that is network address and host identifier or interface
identifier are used for this purpose.

 Internet Protocol addresses are assigned to a host either anew at the
time of booting, or permanently by fixed configuration of its hardware
or software. Persistent configuration is also known as using a static IP
address. In contrast, in situations when the computer's IP address is
assigned newly each time, this is known as using a dynamic IP address

1.5 WORLD WIDE WEB AND ITS EVOLUTION

 The World Wide Web, abbreviated as WWW or W3 and commonly
known as the Web, is a system of interlinked hypertext documents
accessed via the Internet.

 With a web browser, one can view web pages that may contain text,
images, videos, and other multimedia and navigate between them via
hyperlinks.

 The World-Wide Web was developed to be a pool of human
knowledge, and human culture, which would allow collaborators in
remote sites to share their ideas and all aspects of a common project.

14

Evolution of WWW
 In March 1989, Tim Berners-Lee wrote a proposal that referenced

ENQUIRE, a database and software project he had built in 1980, and
described a more elaborate information management system.

 on November 12, 1990, with help from Robert Cailliau, Tim Berners-
Lee published a more formal proposal to build a "Hypertext project"
called "WorldWideWeb" (one word, also "W3") as a "web" of
"hypertext documents" to be viewed by "browsers" using a client–
server architecture.

 This proposal estimated that a read-only web would be developed
within three months and that it would take six months to achieve "the
creation of new links and new material by readers, to achieve universal
authorshipl" as well as "the automatic notification of a reader when
new material of interest to him/her has become available."

 A NeXT Computer was used by Berners-Lee as the world's first web
server and also to write the first web browser, WorldWideWeb, in
1990.

 Tools needed were a working Web the first web browser (which was a
web editor as well); the first web server; and the first web pages,
which described the project itself.

 On August 6, 1991, Tim Berners-Lee posted a short summary of the
World Wide Web project on the alt.hypertext newsgroup.

 This date also marked the debut of the Web as a publicly available
service on the Internet. The first photo on the web was uploaded by
Berners-Lee in 1992, an image of the CERN house band Les Horribles
Cernettes.

 The first server outside Europe was set up at SLAC to host the
SPIRES-HEP database in 91 – 92.

 The concept of hypertext originated with older projects from the
1960s, such as the Hypertext Editing System (HES) at Brown
University by Ted Nelson and Douglas Engelbart.

 Tim Berners Lee introduced the concept of the Universal Document
Identifier (UDI), later known as Uniform Resource Locator (URL) and
Uniform Resource Identifier (URI); the publishing language
HyperText Markup Language (HTML); and the Hypertext Transfer
Protocol (HTTP).

15

 In 1993, a graphical browser was developed by a team at the National
Center for Supercomputing Applications at the University of Illinois at
Urbana-Champaign (NCSA-UIUC), led by Marc Andreessen. This
was the first web browser ever.

1.6 URL

 Uniform Resource Locator (URL) is a Uniform Resource Identifier
(URI) that specifies where an identified resource is available and the
mechanism for retrieving it.

 An example of the use of URLs is the addresses of web pages on the
World Wide Web, such as http://www.example.com/.

 The format is based on Unix file path syntax, where forward slashes
are used to separate directory or folder and file or resource names.

 Conventions already existed where server names could be prepended
to complete file paths, preceded by a double-slash

 Every URL consists of some of the following:

o The scheme name (commonly called protocol), followed by a
colon. The scheme name defines the namespace, purpose, and the
syntax of the remaining part of the URL.

o Domain Name depending upon scheme(alternatively, IP address).
The domain name or IP address gives the destination location for
the URL.

o An optional port number; if omitted, the default for the scheme is
used

o Path of the resource to be fetched or the program to be run. The
path is used to specify and perhaps find the resource requested. It
may be case-sensitive for non window based servers. Eg:
http://www.mudlle.ac.in/news.html

o A query string for scripts The query string contains data to be
passed to software running on the server. It may contain
name/value pairs separated by ampersands, for example
?first_name=John&last_name=Doe.

o Optional fragment identifier that specifies a part or a position
within the overall resource or document. When used with HTTP, it
usually specifies a section or location within the page, and the
browser may scroll to display that part of the page.

16

 When resources contain references to other resources, they can use
relative links to define the location of the second resource.

 relative URLs are dependent on the original URL containing a
hierarchical structure against which the relative link is based.

 the ftp, http, and file URL schemes are examples of some that can be
considered hierarchical, with the components of the hierarchy being
separated by "/"

 A URL is a URI that, "in addition to identifying a resource, provides a
means of locating the resource by describing its primary access
mechanism.

1.7 BROWSERS

 A web browser or Internet browser is a software application for
retrieving, presenting, and traversing information resources on the
World Wide Web.

 Web browsers can also be used to access information provided by
Web servers in private networks or files in file systems. Some
browsers can also be used to save information resources to file
systems.

 Primary function of a browser is to identify the URI and brings the
information resource to user.

 This process begins when user inputs the URI in the browser. Prefix of
the URI describes how to interpret the URI. Most URIs have resource
retrieved over Hyper text Transfer Protocol. Some web browsers also
support prefixes like FTP.

 Once this is done, the HTML script is passed to the browser’s layout
engine. To make the script interactive java script support is needed.
With this, browser can interpret text, images, video and interactive
scripts.

 All major browsers allow users to access multiple information
resources at the same time in different windows or in tabs. Major
browsers include pop up blockers to prevent windows to open without
users consent.

 Most major web browsers have these user interface elements in
common:

o Back and forward buttons to go back to the previous resource and
forward again.

17

oA history list, showing resources previously visited in a list
(typically, the list is not visible all the time and has to be
summoned)

oA refresh or reload button to reload the current resource.

oA stop button to cancel loading the resource. In some browsers, the
stop button is merged with the reload button.

oA home button to return to the user's home page

oAn address bar to input the Uniform Resource Identifier (URI) of the
desired resource and display it.

oA search bar to input terms into a search engine

oA status bar to display progress in loading the resource and also the
URI of links when the cursor hovers over them, and page zooming
capability.

 The usage share of web browsers is as shown below. (Source:
Median values)

 Internet Explorer (43.55%)

 Mozilla Firefox (29.0%; Usage by version number)

 Google Chrome (13.89%)

 Safari (6.18%)

 Opera (2.74%)

 Mobile browsers (4.45%)

 Some special web browsers are listed below –

1.7.1 INTERNET EXPLORER

 Windows Internet Explorer (formerly Microsoft Internet Explorer,
commonly abbreviated IE or MSIE) is a series of graphical web
browsers developed by Microsoft and included as part of the Microsoft
Windows line of operating systems starting in 1995.

 It was first released as part of the add-on package Plus! for Windows
95 that year. Later versions were available as free downloads, or in
service packs. It was part of later versions of windows operating
systems.

 The latest stable release is Internet Explorer 9, which is available as a
free update for Windows 7, Windows Vista, Windows Server 2008
and Windows Server 2008 R2.

 Internet Explorer uses a componentized architecture built on the
Component Object Model (COM) technology. It consists of several

18

major components, each of which is contained in a separate Dynamic-
link library (DLL) and exposes a set of COM programming interfaces
hosted by the Internet Explorer main executable, ‘iexplore.exe’

 Internet Explorer uses a zone-based security framework that groups
sites based on certain conditions, including whether it is an Internet- or
intranet-based site as well as a user-editable whitelist. Security
restrictions are applied per zone; all the sites in a zone are subject to
the restrictions.

1.7.2 NETSCAPE NAVIGATOR

 Netscape Navigator is a proprietary web browser that was popular in
the 1990s. It was the most popular web browser till 2002, after
which competitor browsers have taken over the market of netscape.

 Netscape Navigator was based on the Mosaic web browser.

 Netscape announced in its first press release (October 13, 1994) that
it would make Navigator available without charge to all non-
commercial users, and Beta versions of version 1.0 and 1.1 were
indeed freely downloadable in November 1994 and March 1995,
with the full version 1.0 available in December 1994.

 The first few releases of the product were made available in
"commercial" and "evaluation" versions.

 During development, the Netscape browser was known by the code
name Mozilla. Mozilla is now a generic name for matters related to
the open source successor to Netscape Communicator.

1.7.3 OPERA

 Opera is a web browser and Internet suite developed by Opera
Software. The browser handles common Internet-related tasks such
as displaying web sites, sending and receiving e-mail messages,
managing contacts, chatting on IRC, downloading files via
BitTorrent, and reading web feeds.

 Opera is offered free of charge for personal computers and mobile
phones. This is the most popular mobile phone browser and is not
packages in desktop operating system.

 Features include tabbed browsing, page zooming, mouse gestures,
and an integrated download manager. Its security features include
built-in phishing and malware protection, strong encryption when
browsing secure websites, and the ability to easily delete private data
such as HTTP cookies.

19

 Opera runs on a variety of personal computer operating systems,
including Microsoft Windows, Mac OS X, Linux, and FreeBSD

 Opera includes built-in tabbed browsing, ad blocking, fraud
protection, a download manager and BitTorrent client, a search bar,
and a web feed aggregator. Opera also comes with an e-mail client
called Opera Mail and an IRC chat client built in.

 Opera has several security features visible to the end user. One is the
option to delete private data, such as HTTP cookies, the browsing
history, and the cache, with the click of a button. This lets users
erase personal data after browsing from a shared computer.

 Opera Mobile is an edition of Opera designed for smartphones and
personal digital assistants (PDAs)

1.7.4 MOZILLA FIREFOX

 Mozilla Firefox is a free and open source web browser descended
from the Mozilla Application Suite and managed by Mozilla
Corporation. As of February 2011[update], Firefox is the second
most widely used browser with approximately 30% of worldwide
usage share of web browsers.

 To display web pages, Firefox uses the Gecko layout engine, which
implements most current web standards.

 The latest Firefox features[15] include tabbed browsing, spell
checking, incremental find, live bookmarking, a download manager,
private browsing, location-aware browsing (also known as
"geolocation") based exclusively on a Google service.

 Firefox runs on various operating systems including Microsoft
Windows, Linux, Mac OS X, FreeBSD, and many other platforms.

1.7.5 CHROME

 Chrome, the web browser by Google, is rapidly becoming popular due
to following features-

o SPEED: Chrome is designed to be fast in every possible way: It's
quick in staring up from the desktop, loading web pages and running
complex web applications.

o SIMPLICITY: Chrome's browser window is streamlined, clean and
simple. Chrome also includes features that are designed for efficiency
and ease of use. For example, you can search and navigate from the
same box, and arrange tabs however you wish.

o SECURITY: Chrome is designed to keep you safer and more secure
on the web with built-in malware and phishing protection, autoupdates
to make sure the browser is up-to-date with the latest security updates,
and more. Learn more about Chrome's security features.

20

 Chrome is the first browser to incorporate machine translation in the
browser itself, without requiring additional plugins or extensions.

1.7.6 MOZILLA

1.8 SEARCH ENGINE

 A web search engine is designed to search for information on the
World Wide Web and FTP servers. The search results are generally
presented in a list of results and are often called hits. The information
may consist of web pages, images, information and other types of files.
Some search engines also mine data available in databases or open
directories.

 The very first tool used for searching on the Internet was Archie.

 The first web robot, the Perl-based World Wide Web Wanderer was
built and used by it to generate an index called 'Wandex'. The purpose
of the Wanderer was to measure the size of the World Wide Web.

 Around 2000, Google's search engine rose to prominence.The
company achieved better results for many searches with an innovation
called PageRank. This iterative algorithm ranks web pages based on
the number and PageRank of other web sites and pages that link there,
on the premise that good or desirable pages are linked to more than
others.

 Web search engines work by storing information about many web
pages, which they retrieve from the html itself. These pages are
retrieved by a Web crawler (sometimes also known as a spider) — an
automated Web browser which follows every link on the site.

 This information is then analyzed and indexed The contents of each
page are then analyzed to determine how it should be indexed . The
purpose of an index is to allow information to be found as quickly as
possible.

21

1.9 WEB SERVER

1.9.1 APACHE

1.9.2 IIS

1.9.3 PROXY SERVER

1.10 HTTP PROTOCOL.

22

1.11 SUMMERY

1.12 EXERCISE

1. Define the internet. What protocol suit does it follow?

2. What is email? How is it sent and received?

3. Describe the three components of email.

4. What is meant by email address? What are the required parts of email
address?

5. Are following email addresses valid?

a. 124sir@idol.com

b. 11 myname@yahoo.org

c. Seema_Sathye@ server.co.in

d. Piyush_mishra@myservices.net.in

6. What is telnet used for?

7. What is virtual terminal? What is it used for?

8. Name applications of telnet.

9. Why is FTP protocol used?

10. Explain different connections that can be used by FTP.

11. What are drawbacks of telnet and FTP?

12. Define E commerce. What are the advantages of e commerce?

13. Give one example of B2B, B2C and C2C e commerce.

14. Identify following E commerce category –

a. Sale of online admission form for a college.

b. Submission of the above form.

c. Online resale of a second hand car.

d. Purchase of raw material by an automobile company.

23

15. What is visual collaboration?

16. What is codec how does it function?

17. What are different types of video conferencing system?

18. List the components of video conferencing system.

19. Discuss the problems faced by video conferencing system.

20. Define E business.

21. List a few applications of e business.

22. What is a E business model? Give three examples of E business
model.

23. What are risks for E business? What are the solutions available for
these risks?

24. What is ISP? Explain the role of ISP in an internet connection.

25. Classify following technologies of ISP in business or home
connections

a. A dial up connection with speed 1Mbps

b. A connection to a LAN using leased cable lines

c. Hosting of personal web page

d. Use of wi-fi for a laptop.

26. What are different services provided by ISP?

27. Explain what is peering? What is its advantage?

28. What is VISP? Give one example to explain its use.

29. Discuss the concept of freenet and its importance.

30. What are domain name servers? What is their function?

31. What is internet address? How is it assigned?

32. Write a note on evolution of www

33. What is a web browser? List and compare different available web
browsers



2

HTML AND GRAPHICS

Unit Structure
2.0. Objective

2.1. What is HTML?

2.2. Global Attributes

2.3. Event Handlers

2.4. Document Structure Tags

2.5. Formatting Tags

2.6. List Tags

2.7. Hyperlink Tags

2.8. Image and Imagemaps

2.9. Table Tags

2.10. Form Tags

2.11. Frame Tags

2.12. Executable Content Tags

2.13. Summary

2.14. Exercise

2.0. OBJECTIVE

After going through this chapter you will be able to:

 Identify what is HTML

 Explain How and where to write HTML pages

 Explain use of Global Attributes

 Explain use of Event Handlers

 Identify different types of HTML tags, their functionality and
attributes

2.1. WHAT IS HTML?

WebPages are written in HTML which is a simple client-side
scripting language. HTML is short for HyperText Markup Language.
HyperText is simply a piece of text that works as a link. Markup
Language is a way of writing layout information within documents.
Basically an HTML document is a plain text file that contains text and
nothing else.

25

When a browser opens an HTML file, the browser will look for
HTML codes in the text and use them to change the layout, insert images,
or create links to other pages. Since HTML documents are just text files
they can be written in even the simplest text editor.

A more popular choice is to use a special HTML editor, maybe one
that puts focus on the visual result rather than the codes, a so called
WYSIWYG editor ("What You See Is What You Get"). Some of the most
popular HTML editors, such as FrontPage or Dreamweaver will let you
create pages more or less as you write documents in Word or whatever
text editor you are using. You can write your HTML by hand with almost
any available text editor, including notepad that comes as a standard
program with Windows.

All you need to do is type in the code, then save the document,
making sure to put an .html extension or an .htm extension to the file
(E.g., "mypage.html").

HTML Tags

Everything is written inside HTML tags. A Tag should start with ‘<’ and
ends with ‘>’. HTML tags are mainly of two types:

 Container Tag: A Container tag is one that activates an effect and
that has a companion tag that discontinues the effect. E.g., is
a container tag that, together with its companion closing tag ,
causes all text found between them to be rendered in bold. The
 tag turns on the bold effect and the tag turns it off.

 Standalone Tag: A Standalone tag is one that does not have a
companion tag. E.g., the tag simply places an image on a
page. has no effect that was turned on and needs to be
turned off, so no companion closing tag is needed.

HTML Page Structure
All normal web-pages consist of a HEAD and a BODY.

 The HEAD is used for text and tags that do not
show directly on the page.

 The BODY is used for text and tags that are shown
directly on the page.

All web-pages have an <HTML> tag at the beginning and the end, telling
the browser where the document starts and where it stops.

Basic Code Structure
<HTML>
<HEAD>
<!-- This section is for the title and technical info of the page. -->
</HEAD>
<BODY>
<!-- This section is for all that you want to show on the page. -->

HEAD

BODY

26

</BODY>
</HTML>

The Tag’s attributes: An attribute modifies how a tag’s effect is applied.
Some tags take no attributes, and others may be able to take several.

2.2. GLOBAL ATTRIBUTES

Attributes that can be used with almost every tag are known as Global
Attributes. Following is a list of global attributes:

Attribute Value Description

CLASS classname Specifies a classname for an element
(used for stylesheets)

CONTENTEDITABLE true
false

Specifies if the user is allowed to edit
the content or not

CONTEXTMENU menu_id Specifies the context menu for an
element

DIR ltr
rtl

Specifies the text direction for the
content in an element

DRAGGABLE true
false
auto

Specifies whether or not a user is
allowed to drag an element

DROPZONE copy
move
link

Specifies what happens when dragged
items/data is dropped in the element

HIDDEN hidden Specifies that the element is not
relevant. Hidden elements are not
displayed

ID id Specifies a unique id for an element

LANG language_code Specifies a language code for the
content in an element
fr” denotes French, “de” denotes
German, etc.

SPELLCHECK true
false

Specifies if the element must have its
spelling and grammar checked

STYLE style definition Specifies an inline style for an element

TABINDEX number Specifies the tab order of an element

TITLE text Specifies extra information about an
element

27

Let us see the progress:
1. Lang attribute normally takes _______ character language code

a. 2 b. 3 c.1 d.4

2. Which attribute takes values: true, false, auto?
a. spellcheck b. draggable c. contenteditable

d. dropzone

3. Which tag specifies the tab order of an element?
a. id b. tabindex c. class d. style

2.3. EVENT HANDLERS

Within your HTML, you can respond to an event using an event
handler. You can write an event handler to the HTML element for which
you want to respond to when a specific event occurs. E.g., when a user
double clicks on a thumbnail image you want to display full image. Here,
the tag which displays thumbnail image can have onDblClick
event handler that will call script that will display full image.

Events triggered for the window object apply to the <BODY> tag.

Event Handler Description

OnAfterPrint Invokes the script after the document is printed

OnBeforePrint Invokes the script before the document is printed

OnBeforeOnload Invokes the script before the document loads

OnBlur Invokes the script when the window loses focus

OnError Invokes the script when an error occur

OnFocus Invokes the script when the window gets focus

OnHasChange Invokes the script when the document has change

Onload Invokes the script when the document loads

OnMessage Invokes the script when the message is triggered

OnOffline Invokes the script when the document goes offline

OnOnline Invokes the script when the document comes online

28

OnPageHide Invokes the script when the window is hidden

OnPageShow Invokes the script when the window becomes visible

OnPopState Invokes the script when the window's history changes

OnRedo Invokes the script when the document performs a redo

OnResize Invokes the script when the window is resized

OnStorage Invokes the script when a document loads

OnUndo Invokes the script when a document performs an undo

OnUnload Invokes the script when the user leaves the document

Events triggered by actions inside a HTML form apply to all HTML5 tags.

Attribute Description

OnBlur Invokes the script when an element loses focus

OnChange Invokes the script when an element changes

OnContextMenu Invokes the script when a context menu is triggered

OnFocus Invokes the script when an element gets focus

OnFormChange Invokes the script when a form changes

OnFormInput Invokes the script when a form gets user input

OnInput Invokes the script when an element gets user input

OnInvalid Invokes the script when an element is invalid

OnSelect Invokes the script when an element is selected

OnSubmit Invokes the script when a form is submitted

29

Events triggered by a keyboard apply to all HTML5 tags.

Attribute Description

OnKeyDown Invokes the script when a key is pressed

OnKeyPress Invokes the script when a key is pressed and released

OnKeyUp Invokes the script when a key is released

Events triggered by a mouse apply to all HTML5 tags.

Attribute Description

OnClick Invokes the script on a mouse click

OnDblClick Invokes the script on a mouse double-click

OnDrag Invokes the script when an element is dragged

OnDragEnd Invokes the script at the end of a drag operation

OnDragEnter Invokes the script when an element has been dragged to
a valid drop target

OnDragLeave Invokes the script when an element leaves a valid drop
target

OnDragOver Invokes the script when an element is being dragged
over a valid drop target

OnDragStart Invokes the script at the start of a drag operation

OnDrop Invokes the script when dragged element is being
dropped

OnMouseDown Invokes the script when a mouse button is pressed

OnMouseMove Invokes the script when the mouse pointer moves

OnMouseOut Invokes the script when the mouse pointer moves out
of an element

OnMouseOver Invokes the script when the mouse pointer moves over
an element

30

OnMouseUp Invokes the script when a mouse button is released

OnMouseWheel Invokes the script when the mouse wheel is being
rotated

OnScroll Invokes the script when an element's scrollbar is being
scrolled

2.4. DOCUMENT STRUCTURE TAGS

The document structure tags are those that define each component. Every
HTML document has three major components:

 the HTML declaration
 the HEAD, and
 the BODY

Following is a list of document structure tags:

Tag Example Description
<HTML> <HTML>

… all content and HTML code goes
here…
</HTML>

Declares the
document to be an
HTML document

<HEAD> <HTML>
<HEAD> … </HEAD>
…
</HTML>

Contains the tags
that compose the
document head

<BASE> <HEAD>
<BASE
HREF="http://www.myserver.com/xml/"
TARGET="_blank"/>
</HEAD>
<BODY>
XML file
</BODY>
This example sets XML as default
directory so all files under this directory
and can be accessed by specifying only
name of the file rather than giving the
whole path for the file

The <BASE> tag
specifies a default
URL, and / or a
default target, for
all elements with
a URL
Attributes:
HREF - The URL
to use as the base
URL for links in
the page
TARGET -
Specifies where to
open all the links
on the page. Can
take values:
_blank, _parent,
_self, _top, or
framename

31

<META> <META NAME="keywords"
CONTENT="HTML, XML,
JavaScript,PHP"/>
This example define keywords for search
engines

<META HTTP-EQUIV="refresh"
CONTENT="5"/>
This example will refresh page every 5
seconds

META elements
are typically used
to specify page
description,
keywords, author
of the document,
last modified and
other metadata.
These elements
are used by
browsers or
search engine.
Attributes:
CHARSET -
Specifies the
character
encoding for the
document
CONTENT -
Value of meta
variable
HTTP-EQUIV -
Specifies a HTTP
header for the
information in the
content attribute.
Can take values:
expires, refresh
NAME -
Specifies a name
for the meta
variable. Can take
values: author,
description,
keywords,
generator

<LINK> <LINK HREF=”/style/styles.css”
REL=”Stylesheet”>
<LINK HREF=”/index.html”
REL=”home”>

Defines the
relationship
between a
document and a
linked document.
Attributes:
HREF – Set equal
to the URL of the
linked document
HREFLANG - A
two-letter
language code
that specifies the

32

language of the
linked document.
E.g., ‘en’
MEDIA -
Specifies what
media / device the
target URL is
best. E.g., printer,
speaker, monitor,
etc.
REL - Specifies
the relationship
between target
document and
current document.
E.g., stylesheet,
home, help, toc,
glossary, etc.
TYPE - Specifies
the MIME type of
the target URL.
E.g., text/css,
text/javascript,
image/gif

<SCRIPT> <SCRIPT TYPE="text/javascript">
document.write ("Hello World!")
</SCRIPT>
<SCRIPT TYPE="text/javascript"
SRC=”first.js”>
</SCRIPT>

Used to define a
client-side script.
The script
element either
contains scripting
statements or it
points to an
external script file
through the SRC
attribute.
Attributes:
TYPE - Specifies
MIME type of
script. The default
value is
"text/javascript"
CHARSET -
Defines the
character
encoding used in
script
DEFER -
Indicates that the
script is not going
to generate any

33

document content.
The browser can
continue parsing
and drawing the
page
SRC - Defines a
URL to a file that
contains the script

<STYLE> <HTML>
<HEAD>
<STYLE TYPE="text/css">
H1 {color:yellow}
P {color:blue}
</STYLE>
</HEAD>
<BODY>
<H1>Header 1</H1>
<P>A paragraph.</P>
</BODY>
</HTML>

Specifies style
information for
the document.
Attributes:
MEDIA -
Specifies what
media / device the
target URL is
best. E.g., printer,
speaker, monitor,
etc.
TYPE - Specifies
the MIME type of
the style sheet.

<TITLE> <TITLE>My First Web page</TITLE> Gives a
descriptive title to
a document.
Defines a title in
the browser
toolbar.

<BDO> <BDO DIR=”LTR”>Here’s some
English text.</BDO>

Allows you to
specify the text
direction and
override the
bidirectional
algorithm.
Attribute:
DIR - specifies
direction to read,
left-to-right, right-
to-left

<BODY> <BODY> Text and tags related to
document
</BODY>

Contains all
content and tags
that compose the
document body
Attributes:
BGCOLOR-
background color
BACKGROUND-
background

34

image
LINK- unvisited
link color
ALINK- active
link color
VLINK- visited
link color
TEXT- text color
Note: All
attributes are
removed in
HTML5

Note:
Both style and script tags are normally written inside comment (<!-- … --
>). So the browsers that do not support script or style can ignore this tag’s
content. And browsers that support style and script can ignore comment
and parse the tag’s content

Let us see the progress:
4. What value type attribute of <link> tag will take when the linked

document is a stylesheet file
a. text/css b. text/stylesheet c. text/ss d. text/cs

5. How many values generally taken by http-equiv attribute?
a. 2 b. 1 c. 3 d .4

6. If I want to write content in English and Urdu in my html page.
Which tag will be useful to specify reading direction to the
browser?
a. dir b. bdo c. body d. html

2.5. FORMATTING TAGS

As the name suggests, these tags can be used to format or change the view
or display of the text that is shown on the web page. There are 2 types:

1. Text Formatting Tags
a. Font Formatting Tags: Changes the font properties of the text.

Tag Example Description Output

 text Writes text as bold
<BASEFONT> <BASEFONT SIZE=5

COLOR=”gray”
FACE=”Arial, verdana,
Times”>

Sets base size,
color, and
typeface
properties for the
body text font

35

<BIG> Big<big>text</big> Increase the size
by one

 <FONT SIZE="1"
COLOR=gray
FACE=”Arial”> text

text

Writes text in
smallest font size.
(8 pt)

Writes text in
biggest font size
(36 pt)

<I> <I>text</I> Writes text in
italics

<S>
<STRIKE>

<S> text </S>
<Strike> text </Strike>

Strikes a line
through the text

<SMALL> Small
<SMALL>text</SMALL>

Decrease the size
by one

<SUB> _{text} Lowers text and
makes it smaller

<SUP> ^{text} Lifts text and
makes it smaller

<TT> <TT> text </TT> Writes text as on a
classic typewriter

<U> <U> text </U> Writes underlined
text

b. Phrase Formatting Tags: Describe how the text is being used in the
context of the document. It tells us what the content of tag is.

Tag Example of tag Description of Tag

<ABBR> She got her Doctorate
(<ABBR>PhD</ABBR>)
from the University of
Mumbai

Contains text that is an
abbreviation of
something. Useful for
speech based browser.

<ACRONYM> Practical Extraction and
Reporting Language
<ACRONYM>
(PERL)</ACRONYM>
is a popular CGI
Scripting Language

Contains text that
specifies an acronym.
Useful for speech based
browser.

<ADDRESS> If you have any
comments, please send
them to <ADDRESS>
admin@mu.co.in</ADD
RESS>.

Contains either a postal or
an electronic email
address, typically
rendered in italics.

36

<CITE> According to the
<CITE>HTML 4.0
Recommendation</CITE
>, the tag has
been deprecated

Contains the name of a
source from which a
passage is referred,
typically rendered in
italics.

<CODE> <CODE>
LOCATION.HREF
=’index.html’;
Return true;
</CODE>

Contains chunks of
computer language code,
displays in ‘Courier’ font
face.

 John just got a
big, huge
basket

Contains text that has
been deleted from the
document by editor.

Attributes:
CITE - Provides the URL
of a document that
explains why the deletion
was necessary

DATETIME - Puts a
“timestamp” on the
deletion

<DFN> HTML uses the notion of
<DFN>client
pull</DFN> - a dynamic
document technique

Denotes the defining
instance of a term.
Internet Explorer will
display the text inside
<DFN> in italics.

 Please do
not disturb
the guard

Contains text to be
emphasized. Most
browsers render
emphasized text in italics.

<INS> The New World was
discovered by
Peter
<INS>Columbus</INS>
in 1492

Contains text that has
been inserted into the
document by editor.

Attributes:
CITE - Provides the URL
of a document that
explains why the insertion
was necessary

DATETIME - Puts a
“timestamp” on the
insertion

<KBD> To begin, type
<KBD>go</KBD> and
press Enter

Contains text that
represents keyboard input.

37

<Q> <Q
CITE=”www.education.o
rg”> Education is
must</Q>

Contains a direct
quotation to be displayed
inline. CITE will have
URL of site from which
quotation is taken.

<SAMP> A common first exercise
in a programming course
is to write a program to
produce the message
<SAMP>Hello
World</SAMP>

Contains text that
represents the exact
output from a program.

 STOP!
 Do not
proceed any further.

Contains text to be
strongly emphasized.

<VAR> The
<VAR>Result</VAR>
variable is set to the
number of records that
the query retrieved

Denotes a variable from a
computer program.

2. Block Formatting Tags: This type of tag formats a specific logical
part of the document.

Tag Example Description Output

<BLOCKQUOTE> India is a

<BLOCKQUOTE>

Democratic

</BLOCKQUOTE>

Country

Contains quoted
text is to be
displayed indented
from body text
CITE will have
URL of the site
from which
quotation is taken

 There are two types of
schools:
Public
and
Private

Inserts a line break
in the document.
Carriage returns in
the HTML code do
not output to line
breaks on the
browser screen, so
one often need to
insert the breaks
themselves

There are two
types of
schools:
Public and

Private

38

<DIV> <DIV ALIGN="center">
text1</DIV>
<DIV ALIGN="left">
text2</DIV>

Defines a section or
division of a
document that
requires a special
alignment

<HR> <HR NOSHADE
WIDTH=80% SIZE=4>

Places a horizontal
line on the page.

Attributes:
ALIGN - Left, Right,
or Center

NOSHADE -
Removes the shading
effect and yields a
solid line

SIZE - Controls the
thickness of line
WIDTH - Length of
the line. Can be
specified in pixels or
%

<H1>

<H2>

<H3>

<H4>

<H5>

<H6>

<H1>

Table of Contents

</H1>

<H2>

Chapter 1 – Introduction

</H2>

<H3>

Objectives

</H3>

<H4>

Sub objectives

</H4>

Displays document
headings levels.
Level1 has the largest
font size. <H1> will
display text in largest
size. <H6> will
display text in
smallest size. As level
increases the heading
size decreases

<P> Paragraph starts here.

<P>some text that will
show us how rendering
is done by paragraph
tag</P>

Paragraph ends here.

Defines a paragraph.
It automatically
creates some space
before and after itself.
Takes more vertical
space.

39

<PRE> Defines preformatted
text. Text in a pre
element is displayed
in a fixed-width font
(usually Courier), and
it preserves both
spaces and line
breaks.

 <SPAN STYLE= ”font-
weight: bold; color:
gray”>
Here is some bold, red,
text

Used to group inline-
elements in a
document. One
popular use is for
applying style
information.

Let us see the progress:
7. Which tags have size, color, and face attributes?

a. Basefont b. font c. hr d. div

8. I have done formatting of a letter in Microsoft word. Now I want that
letter to be included in HTML document. Which tag I can use?

a. Span b. Div c. Pre d. P

9. An author has written an article on global warming. Editor1 has
inserted some text and deleted some text. Editor2 should also be able
to view the changes done by Editor1. How is it possible to do this in
HTML/on line?

a. samp and var tag b. del and ins tag c. sub and sup tag
d. I and S tag

2.6. LIST TAGS

Lists are a useful way of representing content.

Tag Example Description Output

 Red
Blue
Yellow

Denotes an item in a list. The
tag is always used in conjunction
with , and tags

 <OL TYPE=”A”
Start=3>
HTML
XML
PHP
JavaScript

Creates an ordered or numbered list.

Attributes:
START - Changes to a position other
than the ordering scheme. E.g.,
setting START to 3 with TYPE set
equal to I produces a list that begins

40

 numbering with III (3 in uppercase
roman numerals).

TYPE - Controls the numbering
scheme. Can take one of the value
“1|A|a|I|i”
A - Uppercase Letters

a - Lowercase Letters

I - Uppercase Roman Numerals

i - Lowercase Roman Numerals

Note: TYPE is not supported in
HTML5

 <UL TYPE=”disc”>
HTML

XML

PHP

JavaScript

Creates an unordered or bulleted list.

Attributes:
TYPE - Specifies which bullet
character to use when displaying the
list. Can take one of the value
”DISC|SQUARE|CIRCLE”

 DISC - solid circular bullet
 SQUARE - solid square

bullet

o CIRCLE- open circular bullet

Note: TYPE is not supported in
HTML5

<DL> <DL>

<DT>Telnet</DT>

<DD>For remote
login</DD>

<DT>FTP</DT>

<DD>For file
transfer</DD>

</DL>

Denotes a definition list

Let us see the progress:

10. Which tags will be used to create glossary of a book?
a. UL, LI b. DL, DT, DD c. OL, LI d. OL,UL,LI

11. In which tag type attribute takes five values?
a. DL b. UL c. OL d. DT

41

2.7. HYPERLINK TAGS

The <A> tag defines a hyperlink, which is used to link from one page to
another. By default, links will appear as follows in all browsers:

 An unvisited link is underlined and blue
 A visited link is underlined and purple
 An active link is underlined and red

Attribute Value Description

HREF URL or anchor
name

The URL of the link. Possible values:

 Absolute URL - Points to another
website. E.g.,
HREF="http://www.myserver.com/
index.htm"

 Relative URL - Points to a file
within a website. E.g.,
HREF="index.htm"

 Anchor URL - Points to an anchor
within a page. E.g., HREF="#top"

HREFLANG Language code A two-letter language code that specifies
the language of the linked document.
E.g., ‘en’

MEDIA Media query Specifies what media/device the target
URL is best. E.g., printer, speaker,
monitor, etc.

NAME Name of anchor Specifies the name of the anchor being
set up

REL Alternate,
archives, help,
author, first,
last, index,
license, next,
search,
stylesheet, etc.

Specifies the relationship between target
document and current document

TARGET _blank
_parent
_self
_top
framename

Tells the browser into which frame the
linked document should be loaded

TYPE Audio, video,
image, text, etc.

Specifies the MIME type of the linked
resource

42

Following code illustrates hyperlink:
Products Detail Page

To follow the link, a user can click the hypertext ‘Products Detail Page’

Following code establishes a named anchor within a document:
//Placing anchor tag

<H1>Table of Contents</H1>

… // some HTML tags and content
// at the end of page
TOP

When a user is at the end of page, he can click on ‘Top’ to reach to the
place where anchor tag is placed i.e. on the top of the page.

Suppose if anchor tag is anchor page then use following:
TOP

Let us see the progress:
12. Target attribute of <a> tag cannot take following value?

a. _parent b. _blank c. _framename d. _self

13. Which two attributes are must to navigate within page?
a. type b. href c. name d. hreflang

2.8. IMAGE AND IMAGEMAPS

To place an image on a HTML page tag is used. To create a multi-
link image <MAP> and <AREA> tags are used along with tag.

Tag Example Description

 <IMG WIDTH=600
HEIGHT=120 SRC=
”/images/logo.gif”
ALT=”Welcome to
XYZ Corporation”
USEMAP=”#main”>

Places an inline image into a document.
Pictures, logos, and other graphical
effects are placed into a document
using the tag.

Attributes:
SRC - Specifies the URL of the image
file
ALT - A text-based description of the
image content (alternative text). Many
browser display it as tooltip when
mouse is moved over the image

WIDTH and HEIGHT - Gives the
width and height of the image in pixels

43

ISMAP - Identifies the image as being
used as a part of a server-side
imagemap

USEMAP - Set equal to the name of the
client-side imagemap to be used with
the image

<MAP> <MAP
NAME=”main”>
<AREA
SHAPE=”POLY”
HREF=”profile.html
”
COORDS=”35,80,16
8,99,92,145”>

<AREA
SHAPE=”CIRCLE”
HREF=”feedback.ht
ml”
COORDS=”288,306,
288,334”>

<AREA
SHAPE=”DEFAUL
T”
HREF=”index.html”
>

</MAP>

Contains HTML tags that define the
clickable regions (hot regions) of an
imagemap.

Attribute:
NAME - Gives the map information a
unique name so it can be referenced by
the USEMAP attribute in the
tag that places the imagemap graphics

<AREA> Defines a hot region in a client-side
imagemap.

Attributes:
ALT - Provides a text alternative for the
hot region in the event that the image
does not load

SHAPE - Specifies the shape of the hot
region being defined. Possible values of
SHAPE include:

RECT - rectangles

CIRCLE - circles

POLY - polygons

DEFAULT - for any point on
the image not part of another hot
region

HREF - Set equal to the URL of the
document to associate with the hot
region

HREFLANG - A two-letter language
code that specifies the language of the
linked document. E.g., ‘en’
MEDIA - Specifies what media/device
the target URL is best. E.g., Printer,
speaker, monitor, etc.

REL - Specifies the relationship
between target document and current
document

TARGET - Specifies into which frame
to load the linked document

44

TYPE - Specifies the MIME type of the
target URL

COORDS - Specifies the coordinates
that define the hot region

Value Description

x1, y1, x2,
y2

If SHAPE="rect", then coordinates of
the top-left corner and the bottom-right
corner of the rectangle

x, y, radius If SHAPE="circle", then coordinates
of the circle center and the radius

x1, y1, x2,
y2,..., xn, yn

If SHAPE="poly", then coordinates of
the edges of the polygon. If the first
and last coordinate pairs are not the
same, the browser will add the last
coordinate pair to close the polygon

Let us see the progress:

14. If in <AREA> tag shape is taken as poly then which coordinates are
supposed to be considered?
a. top-left corner, bottom-right corner b. top-right corner, bottom

left corner
c. edges of the geometric shape d. center, radius

15. Which attribute will let us know whether image is part of server side
scripting?
a. usemap b. ismap c. isusemap d. src

16. Value of which attribute of <MAP> tag is referenced in tag to
link the graphic and imagemap information?
a. shape b. name c. area d. coords

2.9. TABLE TAGS

HTML table tags are better way of representing information in a web
page. These give systematic representation of data. Following are the
HTML table tags:
<TABLE>, <CAPTION>, <THEAD>, <TFOOT>, <TBODY>,
<COLGROUP>, <COL>, <TR>, <TD>, and <TH>

For detailed explanation of HTML table tags refer to Chapter 4.

45

2.10. FORM TAGS

HTML forms are allowing web user to interact with the website.
Forms collect information from a user, and then a script or program on a
web server uses this information to compose a custom response to the
form submission. These form tags are used to produce the form and form
controls. Following are the HTML form tags:

<FORM>, <INPUT>, <SELECT>, <OPTION>, <OPTGROUP>,
<TEXTAREA>, <BUTTON>, <LABEL>, <FIELDSET>, and
<LEGEND>

For detailed explanation of HTML table tags refer to Chapter 6.

2.11. FRAME TAGS

Framed Layouts allows the browser window to split into multiple
regions called frames. Each frame can contain a distinct HTML document,
enabling you to display several documents at once, rather than just one.
Frame tags enable you to keep key page elements (such as navigation
links) on the screen all the times, while other parts of the page change.
Following are the HTML frame tags:
<FRAMESET>, <FRAME>, <NOFRAME>, and <IFRAME>

Note: Except <IFRAME> all other tags are not supported in HTML5

For detailed explanation of HTML table tags refer to Chapter 5.

2.12. EXECUTABLE CONTENT TAGS

Web pages have become more dynamic is due to executable content,
such as Java applets and ActiveX controls. These page elements are
downloaded to the browser and run in its memory space to produce
dynamic content on the browser screen. Following are the HTML
executable content tags:
<APPLET>, <PARAM>, and <OBJECT>

Note: Except <Object> all other tags are not supported by HTML5

Tag Example Description

<APPLET> <APPLET WIDTH=250

HEIGHT=200

CODE=”effect.class”
NAME=”effect”
ALT=”effect text applet”
HSPACE=5 VSPACE=12

Places a JAVA Applet on a
page

Attributes:
CODE - Specifies class file
name

ALIGN - top | middle |
bottom | left | right

46

ALIGN=”right”>

<PARAM
NAME=”message”
VALUE=”Be Effective!”>
...

</APPLET>

ALT - Alternative text

ARCHIVE - Archive list

CODEBASE - URL for
applet code

HEIGHT and WIDTH -
Specifies the width &
height in pixels

HSPACE and VSPACE -
Controls the amount of
white space around the
applet (in pixels)

NAME - applet name

OBJECT - Name of
serialized applet file

<PARAM> Passes a parameter to a
JAVA Applet.

Attributes:
ID - Unique identifier

NAME - Parameter name

VALUE - Parameter value

VALUETYPE - data | ref |
object

TYPE - Internet media type

<OBJECT> <OBJECT

DATA="inlineframe.swf">

</OBJECT>

Used to include objects such
as images, audio, videos,
JAVA Applets, ActiveX,
PDF, and Flash

Attributes:
DATA - URL for the data of
the object

FORM - Specifies one or
more forms the object
belongs to

WIDTH and HEIGHT -
Specifies the width &
height of the object in pixels

Name - Unique name of the
object

TYPE - MIME type of data

USEMAP - Name of the
<MAP> tag for client-side
imagemapping

47

Let us see the progress:

17. Which attribute takes name of the class file of the applet code to place
an applet on the HTML page?
a. code b. codebase c.name d. object

18. Which tag is used to include objects such as images, audio, videos,
JAVA Applets, ActiveX, PDF, and Flash in HTML page?
a. applet b. object c. param d. appobj

2.13. SUMMARY

In this chapter we have learnt how to create HTML pages, different event
handlers, what is use of global attributes. We have discussed various types
of HTML tags, attributes and their uses. Thus we now know what can go
inside an html page and how to create better web pages.

Answers of check your progress:
1. a 2. b 3. b 4. a 5. a
6. b 7. a, b 8. c 9. b 10. b
11. c 12. c 13. b, c 14. C
15. b 16. b 17. b 18. b

2.14. EXERCISE

2.14.1. Questions

1. What is HTML? Why we require HTML?

2. How to create an HTML document?

3. Define tag’s attribute? What are global attributes? Explain them in
detail.

4. What are event handlers? Explain the event handlers that can be used
with body tag.

5. Explain event handlers that can be used with mouse movements done
by user.

6. Explain <BASE>, <ISINDEX>, <META>, <LINK>, <BODY>
document structure tags.

7. Explain text level font formatting tags.

8. Explain text level phrase formatting tags.

9. Explain block level formatting tags.

10. Explain how to place ordered and unordered list on web page. Explain
related tags in detail.

11. How to place hyperlink on web page? Explain <A> tag in detail.
12. Explain tags that are useful for placing image and imagemap on web

page.
13. What is role of Executive content tags? Explain <object> tag in detail.

48

2.14.2. Programs

1. Write code for an HTML page that will use font formatting tags to
display information.

2. Write code for an HTML page that will use block level formatting
tags to display information.

3. Write code for the following output using list tags:

1. F.Y.B.Sc.(IT)
i. New Syllabus

ii. New Question format
2. S.Y.B.Sc.(IT)

i. Old Syllabus
ii. Old Question format



3

IMAGEMAPS AND STYLESHEETS

Unit Structure
3.0. Objective

3.1. What are Imagemaps?

3.2. Client-Side Imagemap

3.3. Server-Side Imagemap

3.4. Using Server-Side and Client-Side Imagemap Together

3.5. Alternative Text for Imagemap

3.6. What are Style Sheets?

3.7. Why are Sheets Valuable?

3.8. Different Approaches to Style Sheets

3.9. Using Multiple Approaches

3.10. Linking to Style Information in Separate File Using <LINK> Tag

3.11. Setting up Style Information

3.12. Embedded Style Information Using <STYLE> Tag

3.13. Inline Style Information

3.14. Summary

3.15. Exercise

3.0. OBJECTIVE

After going through this chapter you will be able to:

 Identify what are imagemaps

 Create client-side and server-side imagemaps

 Using client-side and server-side imagemaps together

 Providing alternative text for imagemaps

 Explain the role of Style sheets

 Identify how to include style sheet in your web page i.e. different
approaches to style sheets

50

3.1. WHAT ARE IMAGEMAPS?

Imagemaps are images with clickable areas (sometimes referred to
as "hotspots") that usually link to another page. This image is “multi-
linked” and can take you to a number of places (pages). Such a
multilinked image is called an Imagemap. If used tactfully, imagemaps
can be really effective. If not, they can potentially confuse users.

The important task in preparing an imagemap is defining which
parts of the image are linked to which URLs. Linked regions in an
imagemap are called hot regions, and each hot region is associated with
the URL of the document that is to be loaded when the hot region is
clicked.

There are two types of imagemaps:

1. Client-Side Imagemap
In this type of Imagemapping, information about the hot region is
downloaded on the client machine with HTML page. So any time
(offline) client can use this Imagemap information. This method is
more preferred.

2. Server-Side Imagemap
In this type of Imagemapping, information about the hot region is
lying on the server. When any area or hot region of the Imagemap
graphic is clicked, coordinates of that area are passed by browser to
the server. Then server does processing and sends the output.

51

3.2. CLIENT-SIDE IMAGEMAP

Client-side imagemaps gives faster imagemap processing and enhance the
portability of your HTML documents. Client-side imagemaps involve
sending the map data to the client as part of an HTML file rather than
having the client contact the server each time the map data is needed.

Advantages

1. Supported by HTML and the Browser: The main advantage for
client-side image maps is that all the features of the image map
(hotspots, related hyperlinks and image) can all be supported with
HTML and rendered by the browser.

2. Server is not involved: Client-side image maps can be designed
and implemented without regard to any special server process
requirements.

3. Faster Design: Because the design of the image map has been
simplified by eliminating the server process, you are able to build
your image map faster.

4. Faster Links: Because coordinates and destination links are
resolved on the client (as opposed to extra traffic to and from the
server), the links are resolved faster.

Steps for creating a client-side imagemap

There are three steps involved in creating a client-side imagemap. They
are as follows:

1. Create the graphic (image) that you want to map into an
imagemap.

2. Define the hot regions for the graphic (using <AREA> tag) and
place that information between the <MAP> and </MAP> tags in
your HTML document.

3. Use the tag to insert the graphic for the imagemap and link
it to the hot region information you defined in the <MAP>section
by using USEMAP attribute of tag.

To set up a circular hot region, you would use code such as the following:
<MAP NAME=”circle”>
<AREA SHAPE=”circle” COORDS=”123, 89, 49” ALT=”Circle
Link” HREF=http://www.myserver.com/circle.html>
</MAP>

Now this mapping information should be linked with an image using:

52

The pound sign (#) before the map name indicates that the map data is
found in the same HTML file. If the map data is in another file called
imagemap.html, your tag would look like the following:

<IMG SRC=”images/circular.gif”
USEMAP=”http://www.myserver.com/imagemap.html#circle”>

E.g., creating client-side mapping for the following image

As we can see there are three shapes viz., circle, rectangle and triangle, in
the image below which is saved as shapes.gif.

First Create Hot regions:
<MAP NAME=shape>
<AREA SHAPE=”circle” COORDS=”23,24,20”
HREF=circle.html ALT=”circle clicked”>
<AREA SHAPE=”rect” COORDS=”28,61,92,93”
HREF=rect.html ALT=”rectangle clicked”>
<AREA SHAPE=”poly” COORDS=”80,4,63,37,98,33,80,4”
HREF=poly.html ALT=”triangle clicked”>
</MAP>

Link hot region with image:
<IMG SRC=”shapes.gif” ALT=”showing different shapes”

USEMAP=#shape>

Note: If <MAP> tag is in some other file (work.htm) then use:
<IMG SRC=”shapes.gif” ALT=”showing different shapes”

USEMAP=work.htm#shape>

3.3. SERVER-SIDE IMAGEMAP

A server-side imagemap is one in which the server determines which
document should be loaded, based on where the user clicked the
imagemap. For this purpose, the server needs the following information:

1. The coordinates of the user’s click - When user will click on any
part of the image, coordinates of that point will be sent to the
server. This information is passed to the server by the client
program.

2. A program that takes the click coordinates as input and provides a
URL as output - Most of the server has their own mechanism to do
this task.

53

3. Access to the information that defines the hot regions and their
associated URLs - Information about hot region and linked URL in
a file stored on server called map file. This file information is
critical to the processing program to a URL. When the program
finds a match, it returns the URL paired with the clicked hot
region.

4. An image/graphic - That is supposed to be used as Imagemap.

5. Proper setup in your HTML file - When you place the imagemap
graphic, you use the tag with ‘ISMAP’ attribute to alert the
browser that the image is to be used as a server-side imagemap.

Creating Map File
The map file is a text file that contains information about the hot

regions of a specific imagemap graphics. A separate map file is needed for
each imagemap graphic.

Points to remember:

1. If two regions overlap in their coordinates, the imagemap program
uses the first region it encounters in the file

2. URLs in map files should always be absolute or fully qualified URLs

3. Pound sign (#) can be used to insert comment on a line in the map
file

4. If shape is circle then coordinates of center and coordinates of any
point on circumference is to be specified

Format of the map file according to NCSA (National Center for
Supercomputing Applications) is: region_type URL coordinates

E.g.,
circle http://www.myserver.com/circle.html 123, 89, 46,132

Steps for creating a server-side imagemap

There are three steps involved in creating a client-side imagemap. They
are as follows:

1. Create the graphic (image) that you want to map into an
imagemap.

2. Create map file

3. Link map file with image by using ‘ISMAP’ attribute of
tag and putting tag into a hyperlink where ‘HREF’ is
pointing to map file

E.g., creating server-side imagemap for the following image
As we can see there are three shapes viz., circle, rectangle and triangle, in
the image below which is saved as shapes.gif.

54

First create a map file that will contain information about hot
region. Type the following in notepad and save as shapes_map.map:

circle http://myserver.com/map/circle.html 23,24,44,21
rect http://myserver.com/map/rect.html 28,61,92,93
poly http://myserver.com/map/poly.html
80,4,63,37,98,33,80,4

Setting ISMAP attribute and using <A> tag:

When the link is clicked, the browser will request the given link,
and add “?x,y” at the end of it, as the click offset from the left, top corner
of the image (such as Shapes_map.map?47,8). If the user is not using a
mouse (or equivalent), then the coordinates will be 0,0.

Let us see the progress:

1. Which attribute of tag doesn’t take any value and is useful
for server side imagemaps?
a. usemap b. ismap c. src d. alt

2. Which coordinates are required for shape=circle if we are using
server side Imagemap?
a. center, any point on circle b. center, radius
c. radius, any point on circle d. center, diameter

3.4. USING SERVER-SIDE AND CLIENT-SIDE
IMAGEMAP TOGETHER

Client-side imagemaps gives faster imagemap processing and
enhance the portability of your HTML documents. Server-side imagemaps
hides mapping information. You can combine server-side and client-side
imagemaps, implementing both at the same time, to ensure your
imagemaps are accessible to the broadest possible audience.

To combine a server-side imagemap with a client-side imagemap
for the shapes.gif example discussed earlier, you can modify the earlier
HTML as follows:

55

Putting the tag with <A> and tags makes it point to the
shapes_map.map file on the server. You need to include the ISMAP
attribute in the tag to let the browser know that the image is linked
as a server-side imagemap as well.

NOTE - You can link NCSA and CERN style server-side imagemaps to
client-side imagemaps by having the HREF in the <A> tag point to the
imagemap script instead of pointing directly to the map file.

3.5. ALTERNATIVE TEXT FOR IMAGEMAP

When you use a server-side imagemap, it is important to provide a
text-based alternative to users who have a text-only browser, who have
image loading turned off, or who are using a non-visual browser. These
users will not be able to view your image, so the entire imagemap will be
lost on them if a text-based alternative is not supplied.

To do this we have to insert links to the mapped pages at the end of
the imagemap html page. And in the imagemap graphic i.e. in tag
give ALT=”imagemap links are at the bottom of the page”.

Text-based alternative are less critical for client-side imagemaps
because of the ALT attribute of the <AREA> tag.

Most sites place their text-based alternative to an imagemap just
below the imagemap graphic. Usually the links are in a smaller font size
and are separated by vertical bars or some such separator character.

Let us see the progress:

3. Which tag is used along with , <map> and <area> tag when
both methods of Imagemap are used together?
a. <a> b. <anchor> c. <href> d. <link>

3.6. WHAT ARE STYLE SHEETS?

Elements that are important for web page are content and
presentation. HTML has set of tags that concentrate on the content of the
page. It also has set of tags that concentrate on presentation of the content.
But still there were many problems faced by web designers. The following
techniques were used to improve the presentation of web pages:
 Using proprietary HTML extensions
 Converting text into images
 Using images for white space control

56

 Use of tables for page layout
 Writing a program instead of using HTML

These techniques considerably increase the complexity of Web pages,
offer limited flexibility, suffer from interoperability problems, and create
hardships for people with disabilities.

3.7. WHY ARE SHEETS VALUABLE?

Style sheets solve these problems at the same time they replace the
limited range of presentation mechanisms in HTML. Style sheets make it
easy to specify the amount of white space between text lines, indentation
of lines, the colors used for the text and the backgrounds, the font size and
style, and a many other details. Style sheets – Documents that provide
specifications for how content should look onscreen.

W3C first introduced CSS1 (Cascading Style sheet) which
included content’s presentation on the web page. Later W3C came up with
CSS2 which included: content’s presentation, for different media types
(aural, print, Braille, projection, etc), capability to specify clipping
regions, overflow, visibility, and minimum and maximum widths and
heights in the visual formatting model.

3.8. DIFFERENT APPROACHES TO STYLE SHEETS

Style sheets are collections of style information that are applied to
plain text. There are different approaches to style sheets. The CSS2
recommendation supports three ways of including style information in a
document. These approaches include:

 Linked Styles (Global styles) – Style information is read from a
separate file (.CSS) that is specified in the <LINK> tag.

 Embedded Styles (Page specific style) – Style information is defined
in the document head using the <STYLE> and </STYLE> tags.

 Inline Styles (Tag specific style) – Style information is placed inside
an <HTML> tag and applies to all content between that tag and its
companion closing tag using the <STYLE> attribute.

One can use multiple approaches together for implementing style
sheets in an HTML document.

3.9. USING MULTIPLE APPROACHES

Points to remember:
 Inline styles override both linked style sheets and style information

stored in the document head with the <STYLE> tag.

57

 Styles defined in the document head override linked style sheets.
 Linked style sheets override browser defaults

3.10. LINKING TO STYLE INFORMATION IN
SEPARATE FILE USING <LINK> TAG

In this case first we have to set style information in a external style
sheet file. So we have to create .CSS file.

Mystyle.css
.p1 {font-face: Arial; color: blue; font-style: italics}
.p2 {letter-spacing: 5pt; color: red; font-style: oblique}

We must including Mystyle.css in our web page using <LINK> tag.

At the beginning of the page in the head section will insert following line:
<HEAD>
<LINK REL=”stylesheet” HREF=”Mystyle.css”>
</HEAD>

Now we can use both class p1 and p2 in all the pages that includes the
above <link> tag. Style information once creating in Mystyle.css can be
used in almost pages of website. You can set style information that is
uniform in all pages for margin, text, alignment, table layout, etc in this
approach.

3.11. SETTING UP STYLE INFORMATION

Syntax for specifying a style characteristic has the form:
{characteristic: value}

Semicolons should separate multiple characteristics / value pair. E.g.,
.p1 {font: 12 pt Times New Roman; line-height: 20 pt; color: black}

The following table lists the different font and block level style attributes
you can assign to a file containing style information.

Font and Block Level Characteristics Permitted in Style Sheets

Characteristic Possible Values

Font-family Any typeface available to the browser through
Windows (the default font is used of one of the
specified fonts is not available)

58

Font-size Any size in points (pt 0, inches (in), centimeters (cm),
or pixels (px); larger or smaller (relative-size values);
xx-small, x-small, small, medium, large, x-large, xx-
large (absolute-size values); or a percentage relative to
the parent font’s size

Font-weight Normal, bold; bolder, lighter (relative weights)

Font-style Normal, italic, oblique

Font-variant Normal, small caps

Color Any RGB hexadecimal triplet or HTML English-
language color name

Background-
attachment

Whether the background image stays fixed or scrolls
with the content) scroll, fixed

Background-color Transparent; any RGB hexadecimal triplet or HTML
English-language color name

Background-image None; URL of image file

Background-repeat Repeat-x (tile background image only in the
horizontal direction), repeat-y (tile only in the vertical
direction), repeat (tile in both directions), no-repeat
(no tiling)

Border-color Any RGB hexadecimal triplet or HTML English-
language color name

Border-style None, dashed, dotted, solid, double, groove, ridge,
inset, outset

Border-bottom-
width

Thin, medium, thick: any number of points (pt),
inches (in), centimeters (cm), or pixels (px)

Border-left-width Thin, medium, thick: any number of points (pt),
inches (in), centimeters (cm), or pixels (px)

Border-right-width Thin, medium, thick: any number of points (pt),
inches (in), centimeters (cm), or pixels (px)

Border-top-width Thin, medium, thick: any number of points (pt),
inches (in), centimeters (cm), or pixels (px)

Float Left, right, none; floats positioned content in left or
right margin

Padding-bottom Any number of points (pt), inches (in), centimeters
(cm), or pixels (px); or a percentage of the parent
element’s width

Padding-left Any number of points (pt), inches (in), centimeters
(cm), or pixels (px); or a percentage of the parent
element’s width

59

Padding-right Any number of points (pt), inches (in), centimeters
(cm), or pixels (px); or a percentage of the parent
element’s width

Padding-top Any number of points (pt), inches (in), centimeters
(cm), or pixels (px); or a percentage of the parent
element’s width

Text-align Left, center, right, justify

Text-decoration None, underline, overline, line-through, blink

Text-indent Any number of points (pt), inches (in), centimeters
(cm), or pixels (pt); or a percentage relative to the
indentation of the parent element

Text-shadow The shadow offset is required and can be set to any
number of points (pt), inches (in), centimeters (cm), or
pixels (px); specification of blur radius and shadow
color is optional

Text-transform Capitalize, uppercase, lowercase, none

line-height Normal; any number of points (pt), inches (in),
centimeters (cm), or pixels (px); or a percentage of the
font size

Letter-spacing Normal; any number of points (pt), inches (in),
centimeters (cm), or pixels (px)

Word-spacing Normal; any number of points (pt), inches (in),
centimeters (cm), or pixels (px)

Margin-left Auto; any number of points (pt), inches (in),
centimeters (cm), or pixels (px); or a percentage of the
parent element’s width.

Margin-right Auto; any number of points (pt), inches (in),
centimeters (cm), or pixels (px); or a percentage of the
parent element’s width

Margin-top Auto; any number of points (pt), inches (in),
centimeters (cm), or pixels (px); or a percentage of the
parent element’s width

Margin-bottom Auto; any number of points (pt), inches (in),
centimeters (cm), or pixels (px); or a percentage of the
parent element’s width

Vertical-align Baseline, sub, super, top, text-top, middle, bottom,
text-bottom; or a percentage of the current line-height

Content Positioning Characteristics Permitted In Style Sheets

60

Characteristic Purpose and Possible Values

Position Specifies how content to be positioned; possible values
are static (content cannot be positioned or
repositioned), absolute (content is positioned with
respect to the upper-left corner of the browser
window). And relative (content is positioned with
respect to its natural position in the document).

Top Specifies the vertical displacement of the positioned
content; values can be in points (pt), pixels (px),
centimeters (cm), or inches (in) and can have negative
values (negative value moves content above its
reference point on the screen).

Left Specifies the vertical displacement of the positioned
content; values can be in points (pt), pixels (px),
centimeters (cm), or inches (in) and can have negative
values (negative value moves content above its
reference point on the screen).

Clip:rect (x1, y1,
x2, y2)

Defines the size of the clipping region (rectangular
area in which the positioned content appears0; (x1,y1)
are the coordinates of the upper-left corner of the
rectangle and (x2,y2) are the coordinates of the lower-
right corner.

Overflow Tells the browser how to positioned content that
overflows the space allocated for it; possible values are
visible, hidden, auto, and scroll.

Visibility Enables the document author to selectively display or
conceal positioned content; possible values are show
or hide.

z-index Permits stacking of positioned content in the browser
screen so that content overlaps; z-index is set to an
integer value of 0 or higher (content with a smaller z-
index will be positioned below content with higher z-
index values).

Using these characteristics we can give various effects to the web page.

3.12. EMBEDDED STYLE INFORMATION USING
<STYLE> TAG

After creating a “.CSS” file that will be useful to all the web pages of
your web site, now concentrate on page specific style. This type of page
specific information can be provided using <STYLE> tag in head section
of HTML document.

61

E.g.: After linking Mystyle.css in your website’s “client.html”, you want
the table in this page should have different layout then you can use
embedded approach.

<HEAD>
<STYLE>
.table1 {border-color: yellow; background-image: client.jpeg;
border-style: dotted}
</STYLE>
</HEAD>

Class table1 can be applied to any/multiple table(s) in client.html
<BODY>
<TABLE CLASS=table1 …>
… </TABLE>
…
<TABLE CLASS=table1 …>
</TABLE>
</BODY>

Selectors are patterns used to select the element(s) you want to apply style.
Few example of selector are given in the following table:

Selector Example Description

.class .intro Selects all elements with class="intro"

#id #fl10 Selects the element with id="fl10"

Element P Selects all <p> elements. One can use any tag/html
element i.e. hr, table, etc.

Link a:link Selects all unvisited links

:visited a:visited Selects all visited links

:active a:active Selects the active link

:hover a:hover Selects links on mouse over

The following CSS STYLE declaration puts a border around every H3
element in the document and centers it on the page:
<HEAD>
<STYLE TYPE="text/css">
H3 {border-width: 2; border: solid; text-align: center}
</STYLE>
</HEAD>

62

To specify that this style information should only apply to H1 elements of
a specific class, we modify it as follows:
<HEAD>
<STYLE TYPE="text/css">
H1.myclass {border-width: 1; border: solid; text-align: center}
</STYLE>
</HEAD>
<BODY>
<H1 CLASS="myclass"> This H1 is affected by our style </H1>
<H1> This one is not affected by our style </H1>
</BODY>

To limit the scope of the style information to a single instance of P, set the
id attribute:
<HEAD>
<STYLE TYPE="text/css">
#myid {border-width: 1; border: solid; text-align: center}

</STYLE>
</HEAD>
<BODY>
<P ID="myid"> This paragraph is affected by style </H1>
</BODY>

If you want all three kinds of links i.e., unvisited, visited, and active to be
rendered in the same style:

A:link {font-size: 10pt; color: 00FF00; font-decoration: underline}
A:visited {font-size: 10pt; color: 00FF00; font-decoration:
underline}
A:active {font-size: 10pt; color: 00FF00; font-decoration:
underline}

Or
A:link A:visited A:active {font-size: 10 pt; color: 00FF00; font-

decoration: underline}

3.13. INLINE STYLE INFORMATION

Till now you have used both lined and embedded approach in your
web site. Suppose if you want the in “client.html” the last paragraph
should be displayed in center and with 5 pt word spacing.

At the end of client.html, insert following:
<P STYLE=”align=center; word-spacing: 5pt”>
… content of the paragraph …
</P>

This style is specific to only one instance of <P> tag.

63

Let us see the progress:

4. How many approaches are there to style sheet?
a. 2 b. 4 c. 5 d. 3

5. I want in my website all main headings of 23 font size, sub heading
of 18 font size. Which approach of style sheet is best here?
a. inline b. embedded c. Linked

3.14. SUMMARY

In this chapter we have discussed what Imagemaps are, creation of
client side and server Imagemap, using both this method together. W also
studied role of style sheet, use of style sheet, different approaches to style
sheet.

Answers of check your progress:
1. b 2. a 3. a 4. d 5. c

3.15. EXERCISE
3.15.1. Questions

1. What are Imagemaps?

2. Explain Server side imagemap in detail.

3. Explain in detail how to create map file that is used for server-side
Imagemap.

4. Client side imagemap is better than server side image map.
Explain.

5. State and explain steps involved in creating client side scripting
language.

6. Explain with example how to combine server side and client side
imagemap.

7. What are Stylesheets? Explain role of stylesheet in web designing.

8. What are the different approaches to stylesheet?

9. List and explain content positioning characteristics and its value.

10. List and explain font and block level positioning characteristics
and its value.

11. Explain Linked styles with example.

12. Explain embedded styles with example.

13. What are selectors? List and explain selectors in detail.

14. Explain inline styles with example.

3.15.2. Programs
1. Take up any jpeg/gif image; write code to apply client side

imagemap for any three regions.



4

TABLES

Unit Structure
4.0. Objective

4.1. Introduction to HTML Tables and Their Structure

4.2. The TABLE Tags

4.3. Alignment Aligning Entire TABLE

4.4. Alignment within a Row

4.5. Alignment within a Cell

4.6. Attributes

4.7. Content Summary

4.8. Background Color

4.9. Adding a Caption

4.10. Setting the Width

4.11. Adding a Border

4.12. Spacing within a Cell

4.13. Spacing between the Cells

4.14. Spanning Multiple Rows or Columns

4.15. Elements That Can Be Placed in a TABLE

4.16. TABLE Sections and Column Properties

4.17. Tables as a Design Tool

4.18. Exercise

4.0. OBJECTIVE

After going through this chapter you will be able to:

 Learn role of HTML tables in developing web pages

 Create different types of html tables

 Use different attributes of <table> tag

 Identify different table tags that makes a table in html

65

4.1. INTRODUCTION TO HTML TABLES AND THEIR
STRUCTURE

Tables are used on websites for two major purposes:
 Arranging information in a table
 Creating a page layout with the use of hidden tables.

Using tables to divide the page into different sections is an
extremely powerful tool. Almost all major sites on the web are using
invisible tables to layout the pages. The most important layout aspects that
can be done with tables are:

 Dividing the page into separate sections (An invisible table is
excellent for this purpose)

 Creating menus (Typically with one color for the header and
another for the links following in the next lines)

 Adding interactive form fields (Typically a gray area containing a
search option)

 Creating fast loading headers for the page (A colored table with a
text on it loads like a bullet compared to even a small banner)

 Easy alignment of images that have been cut into smaller pieces

 A simple way to allow text to be written in two or more columns
next to each other

The importance of using tables for these layout purposes can't be
overrated. However there are a few things to keep in mind when doing so.

Most important is, that the content of a table is not shown until the
entire table is loaded. If you have extremely long pages, you should divide
it into two or more tables - allowing the user to start reading the upper
content while the rest of the page is loading.

4.2. THE TABLE TAGS

Following are the HTML table tags:

Tag Functionality

<TABLE> Contains all HTML tags that compose a table

<CAPTION> Specifies a caption for a table

<THEAD> Defines the header section of a table

<TFOOT> Defines the footer section of the table

<TBODY> Defines the body section of the table

<COLGROUP> Groups a set of columns so that properties may be
assigned to all columns in the group rather than to
each one individually

66

<COL> Specifies properties for a column or columns within a
group

<TR> Defines a row of a table, table header, table footer, or
table body

<TD> Defines a cell in a table

<TH> creates a header cell whose contents will be rendered
in boldface and with a centered horizontal alignment

Some table tags which we use frequently are explained with their
attributes:
<TABLE> - is the main tag which holds all table related tags in it.
Type: Container
Attributes:

Attribute Value Code and output

BORDER: size of border
around the table

Integer <TABLE
BORDER=15>

peaches cherries

walnuts almonds

CELLPADDING: space
between the edge of a cell
and the contents

Integer <TABLE BORDER
CELLPADDING=10>

peaches cherries

walnuts almonds

CELLSPACING: space
between cells

Integer <TABLE BORDER
CELLSPACING=2>

peaches Cherries

walnuts Almonds

WIDTH: width of the table
as a whole

% or Pixels <TABLE BORDER
WIDTH=25%>

peaches cherries

walnuts almonds

67

BGCOLOR: color of the
background

Color Expression <TABLE BGCOLOR=”black”>

peaches cherries

walnuts almonds

BACKGROUND:
picture to use as
background

URL of Image <TABLE
BGROUND=”WaterLilies.jpg”>

ALIGN: alignment of
table to surrounding text

Left|Right|Center <TABLE ALIGN=”Left”>

HSPACE: horizontal
space between table and
surrounding text

Integer <TABLE HSPACE=10
VSPACE=10>

VSPACE: vertical space
between table and
surrounding text

HEIGHT: height of the
table as a whole

Pixels <TABLE HEIGHT=200
BORDER=1>

lemons grapefruit

bananas pineapple

FRAME: parts of
outside border that are
visible

VOID | BOX |
BORDER |
ABOVE | BELOW
| LHS | RHS |
HSIDES | VSIDES

<TABLE BORDER=8
FRAME=LHS>

Name Food

Starflower stir fied tofu

Miko vegetable rice soup

RULES: if there should
be internal borders

NONE | ALL |
COLS | ROWS |
GROUPS

<TABLE BORDER=8
RULES=COLS>

Name Food

Starflower stir fied tofu

Miko vegetable rice soup

Andy hummus

Ping french toast

68

BORDERCOLOR: color
of border around the
table

Color Expression <TABLE
BORDERCOLOR=BLACK>

SUMMARY: Summary
of the purpose of the
table

Text <TABLE SUMMARY=”Attributes
table”>

Picture showing commonly used attributes:

<TR>: designates a table row. Each <TR> element contains one or more
<TD> or <TH> elements.
Type: Container

Attributes:

Attribute Value Code and Output

ALIGN: horizontal
alignment of cell
contents

LEFT | CENTER |
RIGHT

<TR ALIGN=right>

Fruit State

watermelon Georgia

apples Washington

VALIGN: vertical
alignment of cell
contents

TOP | MIDDLE |
BOTTOM |
BASELINE

<TR VALIGN=top>

Fruit Largest
State

Producer

69

BGCOLOR:
background color

Color Expression <TR BGCOLOR=black>

BACKGROUND:
background image

URL of Image <TR BACKGROUND=rose.gif>

BORDERCOLOR:
color of border around
each cell

Color Expression <TR BORDERCOLOR=red>

<TD>: set a single table cell or column
Type: Container

Attributes:

Attribute Value Code and Output

ALIGN: horizontal
alignment of cell contents

LEFT | CENTER
| MIDDLE |
RIGHT

<TD ALIGN=center>

VALIGN: vertical
alignment of cell contents

TOP | MIDDLE |
CENTER |
BOTTOM |
BASELINE

<TD VALIGN=Middle>

WIDTH: width of cell % or Pixels <TD WIDTH=60%>

HEIGHT: height of cell Pixels <TD HEIGHT=20>

COLSPAN: number of
columns to cover

Integer <table>
<caption>Student
Details</caption>
<tr>
<th rowspan="2">Name</th>
<th colspan="2">Address</th>
</tr>
<tr>
<th>City</th>
<th>Street</th>
</tr>
<tr>
<td>Amit</td>
<td>Mumbai</td>
<td>D.N.Road</td>
</tr>
</table>

ROWSPAN: number of
rows to cover

70

Name
Address

City Street

Amit Mumbai D.N.Road

NOWRAP: don't word
wrap

BGCOLOR: color of the
background

Color Expression <TD BGCOLOR=”red”>

BORDERCOLOR: color
of border around the table

Color Expression <TD BORDERCOLOR=”red”>

BACKGROUND: picture
to use as background

URL of Image <TD
BACKGROUND=”water.gif”>

<TH>: It works just like <TD>, except that <TH> indicates that the cell is
a header for a column or row. It is identical to <TD> in every way except
one: <TH> indicates that the table cell is a header cell, a title for a column
or row. <TH> cells are generally rendered with letters in bold.
Type: Container
Attributes: Same as <TD>
E.g., <TABLE BORDER CELLPADDING=4>

<TR>
<TH>name</TH><TH>extension</TH><TH>department</TH></
TR>
<TR> <TD>Ajit Sharma</TD><TD>x
423</TD><TD>Marketing</TD></TR>
<TR> <TD>Ronny Kapoor</TD> <TD>x 454</TD>
<TD>Sales</TD></TR>
</TABLE>

name extension department

Ajit Sharma x 423 Marketing

Ronny Kapoor x 454 Sales

Let us see the progress:
1. Following tag is not a table tag

a. tr b. td c. tc d. th

2. How many possible values can be assigned to attribute FRAME?
a. 9 b. 4 c. 7 d.6

3. Rowspan attribute is used inside which tag?
a. tr b. td c. th d.col

71

4.3. ALIGNMENT ALIGNING ENTIRE TABLE

Align attribute of <table> tag is used to align entire table as discussed
earlier it can take values left| right |center.

E.g.,
<table align=center>
…
</table>

Above code will place the table in the center of the page

4.4. ALIGNMENT WITHIN A ROW

Align and valign attributes of <tr> tag does alignment of the
content that is placed within that <tr> i.e. that row. Align can take values:
LEFT | CENTER | RIGHT. Valign can take values TOP | MIDDLE |
BOTTOM | BASELINE

E.g.,
<tr align= RIGHT valign=middle>…</tr>

Above code will place the content of the row in middle of the row and on
the right of the row.

4.5. ALIGNMENT WITHIN A CELL

Align and valign attributes of <td> or <th> tag does alignment of the
content that is placed within that <td> i.e. that cell/column. Align can take
values: LEFT | CENTER | RIGHT. Valign can take values TOP |
MIDDLE | BOTTOM | BASELINE

E.g.,
<td align= RIGHT valign=middle>…</td>

Above code will place the content of the cell/column in middle of the
column and on the right of the column.

4.6. ATTRIBUTES

Attributes of <Table> tags are discussed in detail explanation of tags

72

4.7. CONTENT SUMMARY

Summary attribute of <table> tag allows you to specify the summary of
the content of the table.

E.g.,
<table summary=”Details of F.Y.B.Sc.(IT) ”> … </table>

4.8. BACKGROUND COLOR

Bgcolor attribute of <table> tag allows you to give background color
to the table. This attribute can take name of the color like pink, blue, red or
can take hexadecimal code equivalent of the color.

E.g.,
<table bgcolor=black>…</table>

Or
<table bgcolor=#000000>…</table>

4.9. ADDING A CAPTION

<CAPTION>: sets a caption for the table. <CAPTION> goes just after the
<TABLE> tag. It does not go inside a <TR>, <TD> or <TH> element.
There should be only one <CAPTION> per table.

E.g.,
<TABLE BORDER CELLPADDING=4>

<CAPTION>Employee Information</CAPTION>
<TR>
<TH>name</TH><TH>extension</TH><TH>department</TH></TR>
<TR> <TD>Ajit Sharma</TD><TD>x
423</TD><TD>Marketing</TD></TR>
<TR> <TD>Ronny Kapoor</TD> <TD>x 454</TD>
<TD>Sales</TD></TR>
</TABLE>

Output:
Employee Information

name extension department

Ajit Sharma x 423 Marketing

Ronny Kapoor x 454 Sales

73

4.10. SETTING THE WIDTH

Width attribute of <table> tag allows you to set the width of a table.
This attribute can value in pixel or in percentage.

E.g.,
<table width=60%>…</table>

When this table will be displayed in browser it will take 60% of
web page. In this case if the screen resolution is 800x600 then table width
will be 60% of 800. If the screen resolution is 1024x768 then table width
will be 60% of 1024
Or
<table width=250>…</table>

When this table will be displayed in browser it will take fixed width
that is 250 pixels irrespective of screen resolution

4.11. ADDING A BORDER

Border attribute of <table> tag allows you to give border to the table.

BORDER establishes the size of the border surrounding the table. The
default value is 0, which is an invisible border. If you put in BORDER
without a value, it defaults to 1.

Here are some examples of the table above using different border values:

<TABLE> <TABLE BORDER=0> <TABLE BORDER=15>

tv radio

mobile ac

tv radio

mobile ac
tv radio

mobile ac

Note that with a BORDER value of 0, the internal borders are invisible;
with any value 1 and up, they are visible, but do not change size.

4.12. SPACING WITHIN A CELL

CELLPADDING attribute of <table> tag allows you to put space within a
cell. CELLPADDING sets the amount of space (both horizontal and
vertical) between the cell wall and the contents. The default value for
CELLPADDING (i.e., if you don't use the attribute at all) is 1. So, for
example, the following examples demonstrate CELLPADDING when it is
absent, when it is set to 1, and when it is set to 10.

74

Code Output
<TABLE BORDER> tv radio

mobile Ac

<TABLE BORDER
CELLPADDING=1>

tv radio

mobile Ac

<TABLE BORDER
CELLPADDING=10> tv Radio

mobile ac

4.13. SPACING BETWEEN THE CELLS

CELLSPACING attribute of <table> tag allows you to put space between
the cells. CELLSPACING sets the amount of space between the cells of a
table. If the borders are visible, CELLSPACING controls the width of the
internal borders. So, for example, following examples demonstrate
CELLSPACING when it is absent, when it is set to 2, and when it is set to
10.

Code Output

<TABLE BORDER> One two

three four

<TABLE BORDER CELLSPACING=2> One two

three four

<TABLE BORDER CELLSPACING=10>
One two

three four

4.14. SPANNING MULTIPLE ROWS OR COLUMNS

Attributes of <TD> tag COLSPAN and ROWSPAN are used to span
multiple rows and columns.

Table cells can span across more than one column or row. The attributes
COLSPAN ("how many across") and ROWSPAN ("how many down")
indicate how many columns or rows a cell should take up.

75

For example, we might want to create header cells for each
department in our table of names and phone numbers. In this table, the
header cells in the first and fifth rows span across two columns to indicate
the department for each group of names.

E.g.,
<TABLE BORDER=2 CELLPADDING=4>
<TR> <TH COLSPAN=2>Production</TH> </TR>
<TR> <TD>Reema Shah</TD><TD>1493</TD> </TR>
<TR> <TD>Akshay Barucha</TD><TD>3829</TD> </TR>
<TR> <TD>Beena Das</TD><TD>0283</TD> </TR>
<TR> <TH COLSPAN=2>Sales</TH> </TR>
<TR> <TD>Bhushan Dave</TD><TD>4827</TD> </TR>
<TR> <TD>Amit Patil</TD><TD>7246</TD> </TR>
<TR> <TD>Rohan Pathak</TD><TD>5689</TD> </TR>
</TABLE>

Output:

Production

Reema Shah 1493

Akshay Barucha 3829

Beena Das 0283

Sales

Bhushan Dave 4827

Amit Patil 7246

Rohan Pathak 5689

4.15. ELEMENTS THAT CAN BE PLACED IN A TABLE

<TABLE>, <CAPTION>, <THEAD>, <TFOOT>, <TBODY>,
<COLGROUP>, <COL>, <TR>, <TD>, and <TH> are the elements that
can be placed in a HTML TABLE. Some tags we have already discussed
others we will discuss in coming sections.

4.16. TABLE SECTIONS AND COLUMN PROPERTIES

<THEAD>, <TFOOT> and <TBODY> defines header, footer and body
section of a table respectively. <THEAD> indicates that a group of rows
are the header rows at the top of the table. <TBODY> indicates that a
group of rows are body rows. <TFOOT> indicates that a group of rows are
the footer rows at the bottom of the table.

76

The most popular use for these three tags, which are currently only
recognized by MSIE 4 and up, is to put borders between groups of rows
instead of between every row. For example, suppose you have a table in
which you want borders around the top row, the bottom row, and around
the entire block of rows in between. You could do that with the following
code. Note that in addition to <THEAD>, <TBODY>, and <TFOOT> you
also must use <TABLE RULES=GROUPS>:

<TABLE CELLPADDING=6 RULES=GROUPS FRAME=BOX>
<THEAD>
<TR><TH>Weekday</TH><TH>Date</TH><TH>Manager</TH>
<TH>Qty</TH></TR>
</THEAD>
<TBODY>
<TR> <TD>Mon</TD> <TD>09/11</TD>
<TD>Kinjal</TD><TD>639</TD></TR>
<TR> <TD>Tue</TD> <TD>09/12</TD>
<TD>Leena</TD><TD>596</TD></TR>
<TR> <TD>Wed</TD> <TD>09/13</TD>
<TD>Ruma</TD><TD>1135</TD></TR>
<TR> <TD>Thu</TD> <TD>09/14</TD>
<TD>Sushant</TD><TD>1002</TD></TR>
<TR> <TD>Fri</TD> <TD>09/15</TD>
<TD>Ram</TD><TD>908</TD></TR>
<TR> <TD>Sat</TD> <TD>09/16</TD>
<TD>Leena</TD><TD>371</TD></TR>
<TR> <TD>Sun</TD> <TD>09/17</TD> <TD>Sushant</TD>
<TD>272</TD></TR>
</TBODY>
<TFOOT>
<TR> <TH ALIGN=LEFT COLSPAN=3>Total</TH>
<TH>4923</TH> </TR>
</TFOOT>
</TABLE>

Output:

77

<COLS>: sets properties for a column of table cells. <COL> is an HTML
4.0 tag. Currently only MSIE and Netscape 6 recognize it.

<COL> goes after the <TABLE> tag and before any <TR>, <THEAD>,
or <TBODY> elements. (It may go inside a <COLGROUP> element)
Each <COL> defines the properties of one column, unless you use SPAN
to indicate that it is for more than one column. So the first <COL> sets
properties for first column, the second <COL> sets properties for second
column, and so on.

Type: Container

Attributes:

SPAN: how
many
columns
<col> tag
affects

Integer
(default is 1)

<TABLE BORDER CELLPADDING=5>
<COL>
<COL STYLE="color:gray" SPAN=2>
<TR> <TH>Expense</TH> <TH>Price</TH>
<TH>Status</TH> </TR>
<TR> <TD>office suite</TD>
<TD>1,343.11</TD> <TD>rental</TD>
</TR>
<TR> <TD>cabling</TD> <TD>1.00</TD>
<TD>installed</TD> </TR>
</TABLE>

Expense Price Status

office
suite

1,343.11 rental

cabling 1.00 installed

ALIGN:
horizontal
alignment

LEFT |
CENTER |
RIGHT |
JUSTIFY

<TABLE BORDER CELLPADDING=5>
<COL ALIGN=LEFT>
<COL ALIGN=RIGHT>
<COL ALIGN=CENTER>
<COL ALIGN=JUSTIFY>
<TR>
<TH>Name</TH> <TH>Price</TH>
<TH>Status</TH> <TH>Comments</TH>
</TR>
more table rows
</TABLE>

78

Name Price Status Comments

Compact 3500 available Nice deal

Deluxe 4000
Not

available
Good view

WIDTH:
width of the
column

pixels <TABLE BORDER CELLPADDING=5>

<COL SPAN=3>

<COL WIDTH="150px">

<TR> <TH>Name</TH> <TH>Price</TH>
<TH>Status</TH> <TH>Comments</TH>
</TR>

more table rows

</TABLE>

BGCOLOR:
background
color of the
column

Name of
color or
equivalent
hexadecimal
code

<TABLE BORDER CELLPADDING=5>

<COL BGCOLOR="#CCCC99">

more table rows

</TABLE>

E.g.,
<TABLE BORDER CELLPADDING=5>
<COL>
<COL ALIGN=RIGHT>
<COL STYLE="color:gray">
<TR><TH>Room
Type</TH><TH>Price</TH><TH>Status</TH></TR>
<TR><TD>Delux</TD><TD>4000</TD><TD>available</TD></
TR>
<TR><TD>Compact</TD><TD>2500</TD><TD>not
available</TD></TR>
</TABLE>

Output:

79

Let us see the progress:

4. Which tag defines one of the table section?
a. col b. tbody c. tr d. th

5. Which tag is used to group table columns?
a. col b. colgroup c. span d. cols

4.17. TABLES AS A DESIGN TOOL

Whenever we are designing web pages which has got multiple
topics to be displayed in one page then for better representation of data we
can use table tags. Table divides the page into multiple columns & rows.
Each column or row can contain different set of information /topic.

As we know whenever data is in tabular format, it is more
readable. So while displaying content on the web pages designer can use
table for placing text, image, etc. Using tables more contents can be
displayed in systematic manner. Use of tables in web pages, makes your
page designing simpler still organized.

4.18. SUMMARY

In this chapter we have seen why tables are used while creating
web pages, different table tags, their attributes, effect of different
attributes. We also discussed different tags that create table head, body
and footer. Here we discussed how to change rendering properties of
different columns and to group them together.

Answers to let’s check your progress
1. c 2. a 3. b 4. b 5. b

4.19. EXERCISE

4.19.1. Questions

1. What is role of tables in web designing?

2. How many table tags are available? Name and explain their use.

3. How to create a table row and how to align content of a row? Explain
drawing diagram

4. How to create a table cell/column and how to align content of a
cell/column? Explain drawing diagram

5. Explain in detail attributes of <TABLE> tag

6. Explain how columns can be grouped within a table.

7. Explain <COL> and <COLGROUP> tags in detail

80

4.19.2. Programs

1. Write html code to display following output:

2. Write html code to display following output:

3. Write html code to display following output:




5

FRAMES

Unit Structure
5.0. Objective

5.1. Introduction to Frames

5.2. Applications

5.3. Frames Document

5.4. The <FRAMESET> Tag

5.5. Nesting <FRAMESET> Tag

5.6. Placing Content in Frames with the <FRAME> Tag

5.7. Targeting Named Frames

5.8. Creating Floating Frames

5.9. Using Hidden Frames

5.10. Exercise

5.0. OBJECTIVE

After going through this chapter you will be able to:

 Identify role of frames in designing web pages

 Identify different frame tags and their attributes

 Learn how to use frame tags to divide web page in multiple
sections

 Explain the role of floating frames

 Explain use of hidden frames

5.1. INTRODUCTION TO FRAMES

Frames allow you to divide the page into several rectangular areas
and to display a separate document in each rectangle. Each of those
rectangles is called a "frame". Frames are very popular because they are
one of the few ways to keep part of the page stationary while other parts
change. Frames are also one of the most controversial uses of HTML,
because of the way the frames concept was designed, and because many
web framed web sites are poorly implemented.

82

The disadvantages of using frames are:
 Frames are not expected to be supported in future versions of

HTML i.e. HTML 5.0
 Frames are difficult to use. (Printing the entire page is difficult).
 The web developer must keep track of more HTML documents

5.2. APPLICATIONS

Following are the applications of frames:

 Page Identification or Context Information: Information that lets
readers know their context, including title, summary, or a special
image, works well in frames. Otherwise, scrolling the page hides
that information. This is similar to a book where the book title,
chapter title, and section title are repeated on headers or footers on
every page, not just the first page. Book designers have learned
that readers need to know where they are.

 Main Site Navigation: Commonly used links, such as links to a
home page and major sections, should stay accessible using a
frame. Common links can include buttons such as "mailto" link.

 Document Navigation: Frames are useful in providing a complete,
compact map of the entire document. Maps should be "You Are
Here" maps (that indicate the page you are currently viewing)
whenever possible. They should be clickable, so that clicking on
the representation of a page will follow a link to the page.

 Local Navigation: Links to related pages, such as Next/Previous in
a list, or sibling button-bars, work very well in frames. Again,
"You Are Here" indication is a real plus.

 Navigating through a Long, Linear Scrolling Page: A common use
for frames is to have one frame that contains a long page and
another frame with a list of links to named anchors inside of the
other frame. Clicking on a link causes the browser to scroll the
long page to the appropriate place. This is done by using <A> tags
with HREF attributes pointing to anchors with NAME attributes
and with a TARGET attribute pointing to the frame containing the
long page.

 Sidebars: Sidebars hold material related to the main text. One type
of sidebar material that works well in frames are lists of related
links.

83

Frames Document
The frameset file is the file you point your browser to. The frameset file
uses <FRAMESET> and <FRAME> to tell the browser to go get more
files to put on the page.

The browser goes out again and retrieves
the files which will appear on the page.

The browser puts all files on one page in separate rectangles ("frames").
The user never sees anything from the original frameset file.
Think of frames as creating a "table of documents" on the page. Like a
table, a group of frames has rows and columns. Each cell of the table
contains a document which is stored in a separate
file. <FRAMESET> defines the beginning and end of the table, and how
many rows and columns that table will have. <FRAME> defines what will
go into each cell ("frame") of table.

Let's look in more detail at the example above. The entire contents
of basicframeset.html (the frameset file) look like this:

84

Code Output
<HTML>
<HEAD>
<TITLE>A Basic Example of
Frames</TITLE>
</HEAD>
<FRAMESET ROWS="75%, *"
COLS="*, 40%">
<FRAME SRC="framea.html">
<FRAME SRC="frameb.html">
<FRAME SRC="framec.html">
<FRAME SRC="framed.html">
<NOFRAMES>
<H1>No Frames? No

Problem!</H1>
Take a look at our
no-
frames version.
</NOFRAMES>

</FRAMESET>
</HTML>

Here's a line-by-line explanation of each piece of code for the frames:

<FRAMESET
Start the "table of documents".

ROWS="75%, *"
The table should have two rows. The first row should take up 75%
of the height of the page; the second should take up the rest.

COLS="*, 40%">
The table should also have two columns. The second column
should take up 40% of the width of the page; the first column
should take up the rest.

<FRAME SRC="framea.html">
<FRAME SRC="frameb.html">
<FRAME SRC="framec.html">
<FRAME SRC="framed.html">

Put the four files into the frames.
<NOFRAMES> ... </NOFRAMES>

Every framed page should have a no-frames alternative.
The <NOFRAMES> content should go inside the
outermost<FRAMESET> tag, usually just before the
last </FRAMESET>. The most efficient method for no-
frames content is to link to a page which is specifically designed
for no-frames.

</FRAMESET>
End the frameset.

85

There are several other aspects of frames to note from this example:

 <FRAMESET > is used instead of the <BODY > tag. The frameset
file has no content which appears on the page, so it has no need
for <BODY>, which designates the content of the page. In fact, if
you use <BODY> (except inside <NOFRAMES>), the frames will
not appear. Tags in <HEAD>, including <TITLE>, still has their
intended effects.

 Rows and columns are described by a list of widths or heights. For
example COLS="25%, *, 40%" says that there will be three
columns. The first column takes up 25% of the width of the page,
the third column takes up 40% of the width of the page, and the
asterisk ("*") means "whatever is left over".

 You do not explicitly designate start and ending of each row. The
browser keeps adding frames until it reaches the number
designated by COLS, and then starts another row.

Let’s check your progress:

1. if we have divided our page in two parts using frames how many
html pages we have to create ?
a. 2 b.3 c.1 d.4

2. Can one specify rows and cols attributes of <frameset> tag
together ?
a. yes b. no

5.3. THE <FRAMESET> TAG

<FRAMESET> defines the general layout of a web page that uses
frames. <FRAMESET> is used in conjunction
with<FRAME> and <NOFRAMES>.

<FRAMESET> creates a "table of documents" in which each rectangle
(called a "frame") in the table holds a separate document. In its simplest
use, <FRAMESET> states how many columns and/or rows will be in the
"table". You must use either the COLS or the ROWS attributes or both.
For example, this code creates a set of frames that is two columns wide
and two rows deep:

86

Code Output
<HTML>
<HEAD>
<TITLE>A Basic Example of
Frames</TITLE>
</HEAD>
<FRAMESET ROWS="75%, *"
COLS="*, 40%">

<FRAME SRC="framea.html">
<FRAME SRC="frameb.html">
<FRAME SRC="framec.html">
<FRAME SRC="framed.html">

</FRAMESET>
</HTML>

<FRAMESET> itself only define how many rows and columns of frames
there will be. <FRAME> defines what files will actual go into those
frames.

<FRAMESET> can be nested within another <FRAMESET> to create a
"table within a table". By doing this you can create frames that are not
strict grids like in the example above. This set of nested framesets creates
the popular "title and sidebar" layout.

Code Output
<HTML>
<HEAD>
<TITLE>Great
Recipes</TITLE>
</HEAD>
<FRAMESET ROWS="15%,*">

<FRAME SRC="top.html"
NAME=TITLE
SCROLLING=NO>

<FRAMESET
COLS="20%,*">

<FRAME SRC="left.html"
NAME=left>

<FRAME SRC="right.html"
NAME=right>

</FRAMESET>
</FRAMESET>
</HTML>

87

5.4. NESTING <FRAMESET> TAG

Nesting frameset means using one frameset within another frameset.
Example shown below illustrates nesting frameset.

The first <FRAMESET > creates a "table" of two rows and only one
column (because there is no COLS attribute). The first row in the frameset
is filled in by the first<FRAME>. The second row in the frameset is filled
in not by a frame but by another <FRAMESET>. This inner frameset has
two columns, which are filled in by two<FRAMESET>’s.

Code for above output:

<HTML>
<HEAD>
<TITLE>Great Recipes</TITLE>
</HEAD>
<FRAMESET ROWS="15%,*">

<FRAME SRC="recipetitlebar.html" NAME=TITLE
SCROLLING=NO>

<FRAMESET COLS="20%,*">
<FRAME SRC="recipesidebar.html" NAME=SIDEBAR>
<FRAME SRC="recipes.html" NAME=RECIPES>

</FRAMESET>
<NOFRAMES>
<H1>Great Recipes</H1>
No frames? No Problem! Take a look at our
no-frames version.
</NOFRAMES>

</FRAMESET>
</HTML>
One has to write code for html pages recipetitlebar.html,
recipesidebar.html, and recipes.html.

88

5.5. PLACING CONTENT IN FRAMES WITH THE
<FRAME> TAG

<FRAME> sets a single frame in the framed page. <FRAME> always
goes inside a <FRAMESET> element. The SRC attribute, which is
required, indicates the URL of the page that goes in the frame. In most
situations you should also use NAME to give the frame a name so that
links can target the frame. Attributes used with <FRAME> tag:

Attribute Description Example

SRC SRC = "URL"

SRC indicates the
URL to put into the
frame.

<FRAME SRC="recipetitlebar.html"
NAME=TITLE SCROLLING=NO>

NAME NAME = "text string"

NAME is used in
conjunction with to
indicate which frame
the link targets.

SCROLLING SCROLLING =
YES | NO | AUTO

SCROLLING says if
there should be a scroll
bar on the right and/or
bottom of the
frame. YES says there
absolutely will be
scroll bars, even if they
are not
needed. NO says there
will not be scroll bars,
even if they might be
needed. AUTO is the
default: there will be
scroll bars on the side
and/or bottom as
needed.

<FRAMESET ROWS="30%,30%,*">

<FRAME SRC="scrollingYes.html"
SCROLLING=YES>

<FRAME SRC="scrollingNo.html"
SCROLLING=NO>

<FRAME SRC="scrollingAuto.html"
SCROLLING=AUTO>

<NOFRAMES>NOFRAMES stuff

</NOFRAMES>

</FRAMESET>

89

NORESIZE NORESIZE says that
the user cannot make
the frame bigger or
smaller by sliding
the borders.
Normally the user
can put the mouse
over the border and
move the border
left/right or
up/down. NORESIZ
E disables that
ability. All borders
that run along the
frame are affected.
For example, this
code
uses NORESIZE wit
h the frame for the
title bar, and so the
border along the
bottom of the title
bar title bar cannot
be resized. However,
the two frames at the
bottom of the page
can still be resized
by moving the
border left and right.

<HTML>

<HEAD>

<TITLE>Great Recipes</TITLE>

</HEAD>

<FRAMESET ROWS="20%,*">

<FRAME
SRC="recipetitlebar.html"
NAME=TITLE NORESIZE>

<FRAMESET COLS="20%,*">

<FRAME
SRC="recipesidebar.html"
NAME=SIDEBAR>

<FRAME
SRC="recipes.html"
NAME=RECIPES>

</FRAMESET>

<NOFRAMES>NOFRAMES stuff

</NOFRAMES>

</FRAMESET>

</HTML>

FRAMEBORDER FRAMEBORDER
= YES | 1 | NO | 0

By default frames
have visible borders
between them.
Sometimes,
however, you want
the frames to join
directly to each other
with no border
between them then
you can specify
frameborder= NO | 0

<FRAMESET ROWS="20%,*"
FRAMEBORDER=NO
FRAMESPACING=0
BORDER=0>

90

Let’s check your progress:
3. Can NORESIZE take any value?

a. yes b. no

4. How many values frameborder attribute can take?
a. 4 b.3 c. 2 d.1

BORDERCOLOR BORDERCOLOR =
color expression

BORDERCOLOR se
ts the color of the
borders around the
frame.

<FRAMESET
ROWS="*,*,40%,*,*">

<FRAME
SRC="bcRow1.html">

<FRAME
SRC="bcRow2.html">

<FRAME SRC="bcRow3.html"
BORDERCOLOR=RED>

<FRAME
SRC="bcRow4.html">

<FRAME
SRC="bcRow5.html">

<NOFRAMES>NOFRAMES stuff

</NOFRAMES>

</FRAMESET>

MARGINWIDTH

MARGINHEIGHT

MARGINWIDTH =
size in pixels

MARGINHEIGHT =
size in pixels

MARGINWIDTH an
d MARGINHEIGHT
control the inside
margins of the
document in the
frame.

<FRAMESET ROWS="60%,*,*">

<FRAME SRC="mwTop.html">

<FRAME
SRC="mwMiddle.html"
MARGINWIDTH=1>

<FRAME
SRC="mwBottom.html"
MARGINWIDTH=50>
<NOFRAMES>NOFRAMES stuff

</NOFRAMES>

</FRAMESET>

91

5.6. TARGETING NAMED FRAMES

Each frame is given a name using <FRAME NAME="...">. These
names uniquely identify each frame. Using these names, links in other
frames can tell the browser that which is the frame the link targets. That is,
in which frame content should be displayed. For example, this code
creates a framed page, naming the frames TITLE, SIDEBAR, and MAIN:

<FRAMESET ROWS="15%,*">
<FRAME SRC="tfetitle.html" NAME=TITLE

SCROLLING=NO MARGINHEIGHT=1>
<FRAMESET COLS="20%,*">

<FRAME SRC="tfesidebar.html" NAME=SIDEBAR>
<FRAME SRC="tfemain.html" NAME=MAIN>

</FRAMESET>
<NOFRAMES>NOFRAMES stuff
</NOFRAMES>
</FRAMESET>

To target one of these frames, the link should have
a TARGET attribute set to the name of the frame where the linked page
should appear. So, for example, this code creates a link to tfetacos.html
and targets that link to the MAIN frame:

my link

Targeting the Whole Window
Eventually in a framed site you want to "break out"... link to a page

and have that page take over the entire window. To create this sort of link,
we add TARGET="_top" to the <A ...> tag:

In the previous example we used TARGET to refer to a frame we
had named MAIN. In this example, however, we refer to a frame we never
named: "_top". We can do this because the outermost frame (that is, the
entire window) is already named "_top". "_top" is a reserved name which
is automatically given to the entire window. So when we
say TARGET="_top", we are saying "put the new web page in the entire
window". Note that "_top" needs to be in all lower-case, it should have
quotes around it, and don't forget the underscore ("_").

5.7. CREATING FLOATING FRAMES

Floating frames are best described as "frames that you can place like
images." These frames can be cut from one place and can be pasted at
other place. <IFRAME> is the tag that places floating frame on the web
page. Attributes that can be used with <IFRAME>:

92

Name Description

ALIGN ALIGN
=”TOP|MIDDLE|BOTTOM|LEFT|RIGHT”

Controls how the floating frame is aligned. TOP,
MIDDLE, and BOTTOM alignments make text
appear next to the frame, starting at the top,
middle, or bottom of the frame. Setting ALIGN to
LEFT or RIGHT floats the frame in the left or
right margin and allows text to wrap around it

FRAMEBORDER Setting FRAMEBORDER to 1 turns on the
floating frame’s borders; setting it to 0 turns them
off

HEIGHT Specifies the height of the floating frame in pixels

MARGINHEIGHT Specifies size (in pixels) of the top margin of the
floating frame

MARGINWIDTH Specifies size (in pixels) of the left margin of the
floating frame

NAME Gives the floating frame a unique name so it can
be targeted by other tags (such as <A>, <FORM>,
and <AREA>)

SCROLLING Controls the presence of scrollbars on the floating
frame. Setting SCROLLING to YES makes the
browser always put scrollbars on the floating
frame, setting it to NO suppresses the scrollbars,
and setting it to the default of AUTO lets the
browser decide whether the scrollbars are needed
or not.

SRC Tells the browser the URL of the HTML file to
load into the floating frame. SRC is a required
attribute of the <IFRAME> tag

WIDTH Specifies the width of the floating frame in pixels

Example:
<HTML>
<TABLE BORDER=1 WIDTH=400 HEIGHT=400
BORDERCOLOR=black>
<TR><TD COLSPAN=2 ALIGN=center>Example of Floating
Frame</TD></TR>
<TR>
<TD WIDTH=20%> </td>
<TD WIDTH=80%>

93

<IFRAME SRC="shapes.gif" WIDTH="50%" HEIGHT="100"
ALIGN=LEFT
SCROLLING="auto" NAME="floater" FRAMEBORDER=1>

Your browser does not support floating frames.
</IFRAME>
</TD>
</TR>
</TABLE>
</HTML>

Output:

Code Explanation:
In the above example we have drawn a table with two rows and

two columns. In first row colspan is done of two columns. In second row
first column has no content but the second column has a floating frame
which is placed using <IFRAME> tag. In <IFRAME> tag src attribute
tells the browser what is supposed to be displayed in floating frame i.e. an
image or an html page. Width and height attribute decides the size of
floating frame. Scrolling attribute is set to auto that specifies if content
size is bigger than the floating frame size than display scroll bar otherwise
do not display scrollbars. Name attribute gives unique name to your
floating frame. If your browser do not support <IFRAME> then content
within starting and ending of the <IFRAME> tag is displayed. In our case
the sentence “Your browser does not support floating frames.” will be
displayed.

Let’s check your progress:
5. Can floating frame be placed in a frames page?

a. yes b. no

94

5.8. USING HIDDEN FRAMES

In web pages whenever we are using frames, we assign how much
% of the total window it is going to occupy. This is done by specifying
rows and cols attribute (as discussed earlier). When Hidden frames are the
one which will be occupying 0% of window so they will be seen by user
(on web page), but the content of the frame will be part of the source code
and will be padded on to the next page.

<frameset rows=”30%,70%”>
<frame src=”v1.html” name=visual1>
<frame src=”v2.html” name=visual2>
<frame src=”hidden.html” name=hidden>
</frameset>

In the above code we can see that third frame is not given any % of
window. So it will not appear on the web page. So, the third frame is
considered as hidden frame.

5.9. SUMMARY

In this chapter we have discussed advantages and disadvantages of
using frames. <frame> and <frameset> tags are used to put framed content
on a page. We also discussed attributes that these tags take, how nested
frames can be created? We learnt to place a floating frame on web page.

5.10. ANSWER TO LET’S CHECK YOUR PROGRESS

1. b 2. b 3.b 4.a 5.a

5.11. EXERCISE
5.11.1. Questions

1. Explain role of frames in web page. Or Explain advantages of
using frames in web pages.

2. Explain <frameset> tag with all its attributes.

3. Explain <frame> tag with all its attributes.

4. Explain the tag that will place floating frame on the web.

5. What happens when your browser does not support frames? How a
web designer solves this problem?

95

5.11.2. Programs
1. Write html code for a page that is divided into two rows using

frames. First row/frame displays logo and name of the company.
Second row/frame is divided into two parts (using frames). First
part has different links and second part is kept for display.

2. Write html code for the following output:

Alpha
Electrical

About Us

Details of the company:
When it was founded: 1998
Products it deals with: Electrical
Branches: in four metro cities

Latest News:

 Launch of new
product next
week

 Bonus to
employees

3. Write code for the following output:

XYZ Corporation Limited
About Us
Clients
Branches
Contact Us

List of products:

Disclaimer | @copyright



6

FORMS

Unit Structure

6.0. Objective

6.1. Creating Forms

6.2. The <FORM> Tag

6.3. Named Input Fields

6.4. The <INPUT> Tag

6.5. Multiple Lines Text Windows

6.6. Drop Down and List Boxes

6.7. Hidden

6.8. Text

6.9. Text Area

6.10. Password

6.11. File Upload

6.12. Button

6.13. Radio

6.14. Checkbox

6.15. Select

6.16. Option

6.17. Forms and Scripting

6.18. Action Buttons

6.19. Labeling Input Files

6.20. Grouping Related Fields

6.21. Disabled and Read Only Fields

6.22. Form Field Event Handlers

6.23. Passing Form Data

6.24. Summary

6.25. Exercise

97

6.0 OBJECTIVE

After going through this chapter you will be able to:

 Learn how to place form in a web page

 Explain how to put different form elements like text field,
password, file upload field, submit and reset button, checkbox,
radio button, select field

 Learn how to validate a form using script

 Learn how to use event handler with forms

 Learn how to pass form data to another page

6.1 CREATING FORMS

Forms are the most popular way to make web pages interactive.
Like forms on paper, a form on a web page allows the user to enter
requested information and submit it for processing. (Fortunately, forms on
a web page are processed much faster.)

For creating form in a web page we use <FORM> tag. <FORM>
tag is a container tag which can have many other form elements in it like
text fields, radio buttons, checkboxes, etc.

6.2 THE <FORM> TAG

<FORM > indicates the beginning of a form. All other form tags go
inside <FORM>. In its simplest use, <FORM>can be used without any
attributes.

Attributes that can be used with form tags are as follows:

Name Description Example

URL ACTION gives the URL of the
program which will process this
form. For example, the CGI
program "MyCGI" is located
at../cgi-bin/mycgi.pl (you can go
directly to that URL). This form
uses "MyCGI":

<FORM ACTION="../cgi-
bin/mycgi.pl">

favorite color: <INPUT
NAME=COLOR>

<INPUT TYPE=SUBMIT>

</FORM>

When you click submit,
your browser sends the form
data to the CGI indicated
in ACTION.

98

METHOD METHOD = GET | POST

METHOD specifies the method
of transferring the form data to
the web server. METHOD can be
either GET or POST. Each
method has its advantages and
disadvantages.

GET sends the data as part of the
URL.

POST is the preferred method for
sending lengthy form data. When
a form is submitted POST the
user does not see the form data
that was sent.

<FORM METHOD=GET
ACTION="../cgi-
bin/mycgi.pl">

town: <INPUT
NAME="town">

<INPUT TYPE=SUBMIT>

</FORM>

The value entered in the
"town" field is tacked on to
the end of the CGI's URL
like this:

../cgi-
bin/mycgi.pl?town=West+R

ochester

<FORM METHOD=POST
ACTION="../cgi-
bin/mycgi.pl">

NAME NAME = "text string"

NAME gives a name to the form.
This is most useful in scripting,
where you frequently need to
refer to the form in order to refer
to the element within the form.

<SCRIPT>

<!--

function Circle_calc_ii()

{

var CircleRadius =
document.MyCircleForm.Ci
rcle_radius.value;

if (CircleRadius >= 0)

{

document.MyCircleForm.Ci
rcle_circumference.value =
2 * Math.PI * CircleRadius ;

document.MyCircleForm.Ci
rcle_area.value = Math.PI *
Math.pow(CircleRadius, 2) ;

}

else

{
document.MyCircleForm.Ci
rcle_circumference.value =
"";

99

document.MyCircleForm.Ci
rcle_area.value = "";

}

}

// -->

</SCRIPT>

<FORM
NAME="MyCircleForm">

<TABLE BORDER
CELLPADDING=3>

<TR>

<TD><NOBR>radius:
<INPUT
NAME="Circle_radius"
SIZE=4></NOBR></TD>

<TD><INPUT
TYPE=BUTTON
OnClick="Circle_calc_ii(thi
s.form);"
VALUE="calculate"></TD
>

<TD ALIGN=RIGHT
BGCOLOR="#AACCFF">

<NOBR>circumference:
<INPUT
NAME="Circle_circumfere
nce"
SIZE=9></NOBR>

<NOBR>area: <INPUT
NAME="Circle_area"
SIZE=9></NOBR></TD>

</TR>

</TABLE>

</FORM>

ENCTYPE ENCTYPE = "multipart/form-
data" | "application/x-www-form-
urlencoded" | "text/plain"

ENCTYPE determines how the
form data is encoded. Whenever
data is transmitted from one place

100

to another, there needs to be an
agreed upon means of
representing that data. Music is
translated into written music
notation, English is written using
letters and punctuation. Similarly,
there needs to be an agreed on
way of presenting the form data
so it's clear that, for example,
there is a field called "email" and
its value is "abc@docs.com".

In most cases you will not need to
use this attribute at all. The
default value is "application/x-
www-form-urlencoded", which is
sufficient for almost any kind of
form data. The one exception is if
you want to do file uploads. In
that case you should
use "multipart/form-data".

TARGET TARGET = "_blank" | "_parent" |
"_self" | "_top" | frame name

TARGET indicates which frame
in a set of frames to send the
results to, and works just like . This attribute
can be used so that the form is
always visible even as the form
results are displayed and
redisplayed.

<FORM

TARGET="TargetFrame"

ACTION="../cgi-
bin/mycgi.pl">

onSubmit onSubmit = "script command(s)"

onSubmit is a scripting event that
occurs when the user attempts to
submit the form. onSubmit can be
used to do some error checking
on the form data, and to cancel
the submit if an error is found.

Note that in order to cancel the
submit event, the onSubmit
should be in the form
onSubmit="return expression".
"return" indicates that value of

This <FORM> tag calls a
Javascript function to check
the form data:

<FORM

ACTION="../cgi-
bin/mycgi.pl"

NAME="testform"

onSubmit="return
TestDataCheck()">

101

the expression should be returned
to submit routine. If expression
evaluates to false, the submit
routine is cancelled; if it is true,
the submit routine goes forward.

onReset onReset = "script command(s)"

onReset runs a script when the
user resets the form.
If onReset returns false, the reset
is cancelled.

Let’s check your progress:

1. Name given to form tag is used by__________
a. form elements b. script c. form d.table

6.3 NAMED INPUT FIELDS

Whenever we are placing form on a web page for example
registrations form. We require various form elements in that form. Each
form element should be given a unique name. This unique name will be
helpful to us when we are referring these elements in a scripting code.

<SCRIPT>

<!--

function Circle_calc_ii()

{

var CircleRadius = document.MyCircleForm.Circle_radius.value;

if (CircleRadius >= 0)

{

document.MyCircleForm.Circle_circumference.value = 2 * Math.PI
* CircleRadius ;

document.MyCircleForm.Circle_area.value = Math.PI *
Math.pow(CircleRadius, 2) ;

}

else

{

document.MyCircleForm.Circle_circumference.value = "";

document.MyCircleForm.Circle_area.value = "";

}

}

// -->

102

</SCRIPT>

<FORM NAME="MyCircleForm">

<TABLE BORDER CELLPADDING=3>

<TR>

<TD>radius: <INPUT type= text NAME="Circle_radius" SIZE=4></TD>

<TD><INPUT TYPE=BUTTON OnClick="Circle_calc_ii(this.form);"
VALUE="calculate"></TD>

<TD ALIGN=RIGHT BGCOLOR="#AACCFF">

circumference: <INPUT type= text NAME="Circle_circumference"
SIZE=9>

area: <INPUT type= text NAME="Circle_area" SIZE=9></TD>

</TR>

</TABLE>

</FORM>

Code Explanation:
In above code we have three text fields each one has got distinct name i.e.
Circle_radius, Circle_cimcumference, Circle_area. When we want to refer
to these fields in our scripting code, we write as follows:

document.MyCircleForm.Circle_radius.value

document.MyCircleForm.Circle_circumference.value = 2 * Math.PI *
CircleRadius ;

document.MyCircleForm.Circle_area.value = Math.PI *
Math.pow(CircleRadius, 2);

6.4 THE <INPUT> TAG

<INPUT> creates the data entry fields on an HTML form. Attributes that
can be used with <INPUT> tag are as follows:

Name Description Example

TYPE TYPE = TEXT | CHECKBOX
| RADIO | PASSWORD | HI

DDEN | SUBMIT | RESET |B
UTTON | FILE | IMAGE

TYPE establishes what type of
data entry field this is.

NAME NAME assigns a name to the
input field, and is required in
most circumstances. In forms
which use scripts, the name of
the input field is sent to the
script.

<FORM
ACTION="../cgi-
bin/mycgi.pl"

onSubmit="return
(this.email.value != '')" >

email: <INPUT

103

The input object is in the
elements collection of the
form object, and can be
referred to by its name using
dot notation.

NAME="email">

<P><INPUT
TYPE=SUBMIT
VALUE="submit">

</FORM>

In this example, we use
the this.form.email to
refer to the email input
field.

VALUE VALUE sets the value for the
input field. VALUE sets the
default values for text and
password fields, sets the
button text in submit, reset and
plain buttons, sets the values
of the choices in radio buttons,
sets the permanent values of
hidden fields, and has no
effect on file, and image fields.

<FORM
ACTION="../cgi-
bin/mycgi.pl">

name: <INPUT
TYPE=TEXT
NAME="realname"
VALUE="wisnesky"><
BR>

password: <INPUT
TYPE=PASSWORD
NAME="realname"
VALUE="pacman">

<P><INPUT
TYPE=SUBMIT
VALUE="submit">

</FORM>

Output:

name: w isnesky

password: ******

submit

SIZE SIZE = integer

SIZE sets how wide
a text or password field should
be. It has no effect on any
other type of field.

SIZE does not set the
maximum length of what can
be typed in

<FORM
ACTION="../cgi-
bin/mycgi.pl">

age:<INPUT
TYPE=TEXT
NAME="age" SIZE=2
>

first name: <INPUT
TYPE=TEXT
NAME="first"
SIZE=10>

last name: <INPUT
TYPE=TEXT

104

NAME="last"
SIZE=30>

cosmic plane of
origin:
 <INPUT
TYPE=TEXT
NAME="plane"
SIZE=70>

<P><INPUT
TYPE=SUBMIT
VALUE="submit">

</FORM>

Output:

age:

first name:
last
name:

cosmic plane of origin:

submit

MAXLENGTH MAXLENGTH = integer

MAXLENGTH sets the
maximum number of
characters
for text or password fields

account ID: <INPUT
TYPE=TEXT
NAME="accountID"
MAXLENGTH=4>

password: <INPUT
TYPE=PASSWORD
NAME="password"
MAXLENGTH=8>

In account ID field we
can enter maximum 4
characters and in
password field
maximum 8 characters.

CHECKED CHECKED indicates that
a radio button or checkbox
should be on when the form
first loads.

<FORM
ACTION="../cgi-
bin/mycgi.pl">

<INPUT
TYPE=CHECKBOX
NAME="maillist"
CHECKED>Yes! Put

105

me on the list!

What color would you
like?

<INPUT TYPE=RADIO
NAME="color"
VALUE="green"
>Green

<INPUT TYPE=RADIO
NAME="color"
VALUE="red"
>Red

<INPUT TYPE=RADIO
NAME="color"
VALUE="blue"
CHECKED >Blue

<INPUT TYPE=RADIO
NAME="color"
VALUE="brown"
>Brown

<P><INPUT
TYPE=SUBMIT
VALUE="submit">

</FORM>

Output:

Yes! Put me on the
list!

What color would you
like?

Green

Red

Blue

Brown

submit

BORDER BORDER = integer

BORDER is used for image
submit buttons. BORDER
indicates if there should be a
visible border around the
image. BORDER only has an
effect in Netscape. MSIE does
not put any visible border
around image submits.

106

When you use the image type
of input, you can use many of
the same attributes as
with , including:

SRC = "image URL"
HEIGHT, WIDTH, ALT,
HSPACE = integer,
VSPACE = integer,
ALIGN = LEFT | RIGHT |
TOP | TEXTTOP | MIDDLE |
ABSMIDDLE | CENTER |
BOTTOM | ABSBOTTOM |
BASELINE

DISABLED,
READONLY

READONLY and DISABLED
both remove the functionality
of the input field, but to
different degrees.

READONLY locks the field:
the user cannot change the
value.

DISABLED does same thing
but takes it further: user cannot
use the field in any way, not to
highlight the text for copying,
not to select the checkbox, not
to submit the form. In fact, a
disabled field is not even sent
if the form is submitted.

<INPUT
NAME="realname"
VALUE="Hi There"
READONLY>

<INPUT
NAME="realname"
VALUE="Hi There"
DISABLED>

ACCESSKEY ACCESSKEY = "text string"

ACCESSKEY specifies a
shortcut key to go directly to
the input field. The key is
pressed along with
the ALT key. For button style
fields, using the key is like
pressing the button.

<INPUT
TYPE=SUBMIT

ACCESSKEY="g"

VALUE="Go!">

TABINDEX TABINDEX = integer

Normally, when the user tabs
from field to field in a form (in
a browser that allows tabbing,
not all browsers do) the order
is the order the fields appear in
the HTML code.

However, sometimes you want
the tab order to flow a little
differently. In that case, you

<FORM
ACTION="../cgi-
bin/mycgi.pl"
METHOD=POST>

<TABLE BORDER
CELLPADDING=3
CELLSPACING=5
BGCOLOR="#FFFFCC
">

107

can number the fields
using TABINDEX. The tabs
then flow in order from
lowest TABINDEX to
highest.

<TR>

<TD>name: <INPUT
NAME="realname"
TABINDEX=1></TD>

<TD
ROWSPAN=3>commen
ts

<TEXTAREA
COLS=25 ROWS=5
TABINDEX=4>
</TEXTAREA></TD><
/TR>

<TR> <TD>email:
<INPUT
NAME="email"
TABINDEX=2></TD><
/TR>

<TR> <TD>department:
<SELECT
NAME="dep"
TABINDEX=3>

<OPTION
VALUE="">...

<OPTION
VALUE="mkt">Marketi
ng

<OPTION
VALUE="fin">Finance

<OPTION
VALUE="dev">Develo
pment

<OPTION
VALUE="prd">
Production</SELECT><
/TD></TR>

</TABLE>

</FORM>

Let’s check your progress:

2. How form elements can be placed using <INPUT> tag?
a. 8 b.7 c.9 d. 10

3. A ___________ field is not even sent if the form is submitted
a. disabled b. enabled c. readonly d. blank

108

6.5 HIDDEN

HIDDEN indicates that the field is invisible and the user never
interacts with it. The field is still sent to the script, and scripts can also use
the hidden field. HIDDEN is commonly used as output of a script which
creates a new form for more input. For example, a web site which
facilitates online discussions may use a hidden field to keep track of which
message is being responded to:

<H2>Your Reply</H2>

<FORM METHOD=POST ACTION="../cgi-bin/mycgi.pl">

<INPUT TYPE=HIDDEN NAME="postingID" value="98765">

name: <INPUT NAME="realname" SIZE=30>
email: <INPUT
NAME="email">

subject: <INPUT NAME="subject" VALUE="Re: Hamlet and hesitation"
SIZE=30>

<P>comments:

<TEXTAREA NAME="comments" COLS=50 ROWS=10
WRAP=VIRTUAL>

Joe Smiley wrote:

: I think Hamlet doesn't act because if he does, the play's over.

</TEXTAREA>

<P><INPUT TYPE=SUBMIT VALUE="Send It!">

</FORM>

Output:

Code Explanation:
In the above code PostID field is hidden so in the output you will not be
able to see that field. But definitely the value of PostID is passed to the
next page. So values which you want to pass to next page but without
displaying to user then you can hidden field.

109

Let’s check your progress:

4. Which fields are not visible to user on web page?
a. readonly b. hidden c. disabled d.visual

6.6 TEXT

TEXT creates a text entry field (the most popular type of data entry field):

<FORM ACTION="../cgi-bin/mycgi.pl">
name: <INPUT TYPE=TEXT NAME="realname">
<P><INPUT TYPE=SUBMIT VALUE="submit">
</FORM>

OR
<FORM ACTION="../cgi-bin/mycgi.pl">
<!-- Note absence of TYPE attribute -->
name: <INPUT NAME="realname">
<P><INPUT TYPE=SUBMIT VALUE="submit">
</FORM>

Output:

The behavior of TEXT fields can be modified using these attributes:
VALUE: set an initial value for the field
SIZE: how wide the field should be
MAXLENGTH: the maximum number of characters the user can enter

6.7 TEXT AREA

<TEXTAREA> indicates a form field where the user can enter large
amounts of text (i.e. multiline input). In most respects, <TEXTAREA>
works like an <INPUT> field. It can have a name, a default value, script
events such as onChange, and is sent to a scripting code as a name/value
pair. One main difference is that <TEXTAREA> is a container tag.

<TEXTAREA> takes following attributes:

Name Description Example

NAME NAME = "text string"

NAME sets the name of the field for
use in scripting. This attribute works
just like <INPUT NAME="...">

110

COLS &
ROWS

COLS indicate how many
characters (not pixels) wide the text
area should be. ROWS indicate how
many rows should be in the text
area. Both attributes are required in
the <TEXTAREA> tag. These
attributes do not set any limit on
how much can be typed in, just how
much of the textarea is visible

<TEXTAREA NAME="few"
COLS=10
ROWS=2></TEXTAREA>

Output:

<TEXTAREA NAME="some"
COLS=50
ROWS=5></TEXTAREA>

Output:

DISABLED
READONLY

DISABLED and READONLY work
exactly like the corresponding
attributes for <INPUT>. Please
see <INPUT
DISABLED>and <INPUT
READONLY>.

TABINDEX TABINDEX = integer

TABINDEX is supported by MSIE
4.x and higher and Netscape 6.

Normally, when the user tabs from
field to field in a form (in a browser
that allows tabbing, not all browsers
do) the tab order is the order the
fields appear in the HTML code.

However, sometimes you want the
tab order to flow a little differently.
In that case, you can number the
fields using TABINDEX. The tabs
then flow in order from
lowest TABINDEX to highest.

<TABLE BORDER
CELLPADDING=3
CELLSPACING=5
BGCOLOR="#ffffcc">

<TR><TD>name: <INPUT
NAME="realname"
TABINDEX=1></TD>

<TD
ROWSPAN=3>comments

<TEXTAREA COLS=25
ROWS=5
TABINDEX=4></TEXTARE
A></TD></TR>

<TR> <TD>email: <INPUT
NAME="email"
TABINDEX=2></TD></TR>

<TR> <TD>department:
<SELECT NAME="dep"
TABINDEX=3>

111

<OPTION VALUE="">...

<OPTION
VALUE="mkt">Marketing

<OPTION
VALUE="fin">Finance

<OPTION
VALUE="dev">Development

<OPTION VALUE="prd">
Production</SELECT></TD>
</TR>

</TABLE>

Let’s check your progress:

5. Which field allows user to enter multiple line data?
a. text b. password c. textarea
d.hidden

6.8 PASSWORD

PASSWORD indicates that the field is for typing in a password.
PASSWORD works just like a TEXT type field, with the difference that
whatever is typed is not displayed on the screen (in case someone is
watching over your shoulder or you have to leave the work station).
Instead of showing what you typed in, the browser displays a series of
asterisks (*), bullets (·), or something to show that you are typing, but not
what you are typing. So, for example, this code:

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>
name: <INPUT TYPE=TEXT NAME="realname">

password: <INPUT TYPE=PASSWORD NAME="mypassword">
<P><INPUT TYPE=SUBMIT VALUE="submit">
</FORM>

Output:

Note that PASSWORD fields are not sent encrypted, they are sent in
the same manner as all the other elements on the form: in the clear text.
Note also that when you use PASSWORD you should also set the form
METHOD to POST.

112

6.9 FILE UPLOAD

FILE is used for doing file uploads in a form. File uploads are a relatively
new and still not well-standardized type of form input, but they show great
promise once the bugs are ironed out. File uploads allow you to send an
entire file from your computer to the web server as part of your form
input.

<FORM METHOD=POST ENCTYPE="multipart/form-data"
ACTION="../cgi-bin/mycgi.pl">
File to upload: <INPUT TYPE=FILE NAME="upfile">

<INPUT TYPE=SUBMIT VALUE="Submit">
</FORM>

Configuring a form for file uploads requires setting two attributes
in the <FORM> tags in addition to using <INPUT TYPE=FILE>: POST
and "multipart/form-data" (as in the example above). When the data is
sent, the original file name (including the full path) of the file as it was on
your computer is sent to the web server. The Scripting code, however, is
free to save the file as anything it wants -- or to not save it at all.

An often expressed wish with file uploads is to have a way of
suggesting the file type being uploaded. Netscape, for example, when it
gives you the file upload dialog box, inexplicably assumes you want to
upload an HTML file. Unfortunately, there is no way to suggest a file
type.

Let’s check your progress:

6. What should be the value of ENCTYPE if file upload filed is used in
web page?

a. multipart/form-data b. multipart c. text/form-data
d. form-data

6.10 BUTTON

BUTTON defines a button which causes a script to run. Use the onClick
attribute to give the script command(s). BUTTON is used only with
scripting. Browsers that don't understand scripts don't understand this type
of input and usually render it as a text input field.

<FORM>
<TABLE BORDER CELLPADDING=3>
<TR>

113

<TD><NOBR>radius: <INPUT NAME="Circle_radius"
SIZE=4></NOBR></TD>

<TD><INPUT TYPE=BUTTON
OnClick="Circle_calc(this.form);" VALUE="calculate"></TD>

<TD ALIGN=RIGHT BGCOLOR="#AACCFF">
<NOBR>circumference: <INPUT

NAME="Circle_circumference" SIZE=9></NOBR>

<NOBR>area: <INPUT NAME="Circle_area"

SIZE=9></NOBR></TD>
</TR>

</TABLE>
</FORM>

Output:

<BUTTON>:
Another way to render button on a web page is using <BUTTON> tag.
<BUTTON> creates a button. Unlike <INPUT>, <BUTTON> is a
container which allows you to put regular HTML contents in the button,
including text and pictures. Unfortunately, <BUTTON> does not degrade
well, and so at this time it's best to stick with <INPUT>. <BUTTON> tag
has following attributes:

TYPE: what type of button is this
onClick: script to run when the user
clicks here
NAME: name of this button element
VALUE: the value sent with the form

DISABLED: disable this button
ACCESSKEY: shortcut key for this
button
TABINDEX: tab order

<BUTTON TYPE=SUBMIT><IMG SRC="Penguins.jpg" HEIGHT=97
WIDTH=105 ALT="Starflower"
ALIGN="ABSMIDDLE">Send It
In!</BUTTON>

Output:

By default, <BUTTON> creates a plain button, much like <INPUT
TYPE=BUTTON>. With the TYPE attribute, <BUTTON> can also create
submit and reset buttons. The HTML code put between <BUTTON> and
</BUTTON> is not the value sent with the form. The value of the button
determined by the <INPUT VALUE="..."> attribute.

114

SUBMIT
SUBMIT creates the "Submit" button which sends the form in to the CGI.
In its simplest form, you can use SUBMIT and no other attributes for the
<INPUT ...> tag:

<FORM ACTION="../cgi-bin/mycgi.pl">
name: <INPUT NAME="realname">

email: <INPUT NAME="email"><P>
<INPUT TYPE=SUBMIT>
</FORM>

Output:

You can customize the text used for the button using the VALUE
attribute:

<FORM ACTION="../cgi-bin/mycgi.pl">
name: <INPUT NAME="realname">

email: <INPUT NAME="email"><P>
<INPUT TYPE=SUBMIT VALUE="Send It!">
</FORM>

Output:

You may sometimes find that you want to have more than one submit
button on a form. If you give each button the same name, but different
values, the browser will indicate which submit button was pressed:

<FORM ACTION="../cgi-bin/mycgi.pl">Go to the check-out
page?
<INPUT TYPE=SUBMIT NAME="checkout" VALUE="YES">
<INPUT TYPE=SUBMIT NAME="checkout" VALUE="NO">
</FORM>

Output:

Let’s check your progress:
7. Can we place more than one submit button in an html form?

a. yes b. no

115

RESET
RESET resets the form so that it is the way it was before anything was
typed in:

<FORM ACTION="../cgi-bin/mycgi.pl">
<INPUT TYPE=TEXT>
<INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>
</FORM>

Output:

If you do choose to use have a reset button in your form, consider adding a
check if the user actually wants to reset. You can do this by adding an
onReset event handler to the <FORM> tag:
<FORM ACTION="../cgi-bin/mycgi.pl"

onReset="return confirm('Do you really want to reset the form?')">
<INPUT TYPE=TEXT NAME="query">
<INPUT TYPE=SUBMIT>
<INPUT TYPE=RESET>
</FORM>

6.11 RADIO

RADIO is used to create a series of choices of which only one can
be selected. The term "radio button" comes from the buttons for the radio
in an automobile, where selecting one radio station automatically de-
selects all the others. HTML radio buttons are created by using several
<INPUT TYPE=RADIO> buttons, all with the same name, but with
different values. For example, this series of buttons allows you to choose
one size for a pizza:

<FORM ACTION="../cgi-bin/mycgi.pl">
What size pizza?<P>
<INPUT TYPE=RADIO NAME="pizzasize" VALUE="S"
>small

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="M"
CHECKED >medium

<INPUT TYPE=RADIO NAME="pizzasize" VALUE="L"
>large<P>
<INPUT TYPE=SUBMIT VALUE="submit">
</FORM>

116

Output:

If no CHECKED attribute is used, different browsers have different ways
of displaying the initial state of a series of radio buttons. Netscape and
MSIE have none of the buttons selected. Mosaic selects the first button.

6.12 CHECKBOX

CHECKBOX creates a checkbox which can be either on or off:
<FORM ACTION="../cgi-bin/mycgi.pl">
<INPUT TYPE=CHECKBOX NAME="mushrooms"
>mushrooms

<INPUT TYPE=CHECKBOX NAME="greenpeppers">green
peppers

<INPUT TYPE=CHECKBOX NAME="olives" >olives

<INPUT TYPE=CHECKBOX NAME="onions" >onions<P>
<INPUT TYPE=SUBMIT VALUE="submit">
</FORM>

Output:

By default, the checkbox is initially off. If you want the checkbox
initially on, use the CHECKED attribute. Checkbox CHECKBOXs are
only sent to the scripting code if they are on; if they are off, no name/value
pair is sent (try out the form above to see).

6.13 SELECT

<SELECT> sets up a list of choices from which a user can select one or
many. <SELECT> tag takes following attributes:

117

Name Description Example

NAME NAME names the
select field for use with
scripting. NAME works
just like <INPUT
NAME="...">

MULTIPLE MULTIPLE designates
that more than one
option in the list can be
selected. When creating
a multiple list it is
almost always a good
idea to also use
the SIZE attribute.

<SELECT NAME="toppings"
MULTIPLE SIZE=5>

<OPTION
VALUE="mushrooms">mushro
oms

<OPTION
VALUE="greenpeppers">green
peppers

<OPTION
VALUE="onions">onions

<OPTION
VALUE="tomatoes">tomatoes

<OPTION
VALUE="olives">olives

</SELECT>

SIZE SIZE = integer

SIZE indicates how
many rows of the list
should be displayed.
The default is one.

For example, the following code
creates a select list with 6 rows

<SELECT NAME="county"
SIZE=6>

118

DISABLED DISABLED works
exactly the same as the
corresponding attribute
for <INPUT>.

TABINDEX TABINDEX = integer

Normally, when the
user tabs from field to
field in a form (in a
browser that allows
tabbing, not all
browsers do) the tab
order is the order the
fields appear in the
HTML code.

However, sometimes
you want the tab order
to flow a little
differently. In that case,
you can number the
fields
using TABINDEX. The
tabs then flow in order
from lowest
TABINDEX to
highest.

<TABLE BORDER
CELLPADDING=3
CELLSPACING=5
BGCOLOR="#FFFFCC">

<TR>

<TD>name: <INPUT
NAME="realname"
TABINDEX=1></TD>

<TD
ROWSPAN=3>comments

<TEXTAREA COLS=25
ROWS=5
TABINDEX=4></TEXTAREA>
</TD></TR>

<TR> <TD>email: <INPUT
NAME="email"
TABINDEX=2></TD></TR>

<TR> <TD>department:
<SELECT NAME="dep"
TABINDEX=3>

<OPTION VALUE="">...

<OPTION
VALUE="mkt">Marketing

<OPTION
VALUE="fin">Finance

<OPTION
VALUE="dev">Development

<OPTION
VALUE="prd">Production</SE
LECT></TD></TR>

</TABLE>

6.14 OPTION

<OPTION ...> is used along with <SELECT> to create select
lists. <OPTION> indicates the start of a new option in the
list. <OPTION> can be used without any attributes, but you usually need
the VALUE attribute, which indicates what is sent to the server. The text
which follows <OPTION> is what is displayed in the browser.
<OPTION> takes following attributes:

119

Name Description Example

VALUE VALUE indicates the
value that is sent to
the server if that
option is chosen. The
value of VALUE is
not seen by the user.

<SELECT NAME="partnumber">

<OPTION
VALUE="7382">steam turbine

<OPTION
VALUE="2928">resistor array

<OPTION
VALUE="3993">widget analyzer

<OPTION VALUE="9398">fiber
identifier

</SELECT>

Output:

In this example, if you selected the
first option, "steam turbine", then
the name/value pair
partnumber=7382 is sent to the
scripting code.

SELECTED SELECTED indicates
that the option should
be selected by
default.

In this example, the third item
("widget analyzer") is the default
item:

<SELECT NAME="partnumber">

<OPTION VALUE="7382"
>steam turbine

<OPTION VALUE="2928"
>resistor array

<OPTION VALUE="3993"
SELECTED >widget analyzer

<OPTION VALUE="9398"
>fiber identifier

</SELECT>

Output:

120

SELECTED can also be used
in multiple select lists. In this
example, the "green team" and the
"purple team" are the default
selected items:

<SELECT NAME="teams"
MULTIPLE SIZE=6>

<OPTION VALUE="b"
>blue team

<OPTION VALUE="g"
SELECTED >green team

<OPTION VALUE="r" >red
team

<OPTION VALUE="p"
SELECTED >purple team

<OPTION VALUE="f"
>fuschia team

<OPTION VALUE="m"
>mango team

</SELECT>

Output:

Let’s check your progress:

8. If you want to a drop down box with five cities name in it. How many
<OPTION> tags are required?

a. 2 b.3 c.5 d.1

6.15 FORMS AND SCRIPTING

Source code:

<SCRIPT TYPE="text/javascript">

<!--

function Circle_calc(GeoForm)

{

var CircleRadius = GeoForm.Circle_radius.value;

121

if (CircleRadius >= 0)

{

GeoForm.Circle_circumference.value = 2 * Math.PI * CircleRadius ;

GeoForm.Circle_area.value = Math.PI * Math.pow(CircleRadius, 2) ;

}

else

{

GeoForm.Circle_circumference.value = "";

GeoForm.Circle_area.value = "";

}

}

function Cone_calc(GeoForm)

{

var ConeRadius = GeoForm.Cone_radius.value;

var ConeHeight = GeoForm.Cone_height.value;

if ((ConeRadius >= 0) && (ConeHeight >= 0))

{

GeoForm.Cone_surfacearea.value = (Math.PI * Math.pow(ConeRadius,
2)) +
(Math.PI * ConeRadius * Math.sqrt(Math.pow(ConeRadius, 2) +
Math.pow(ConeHeight, 2)));

GeoForm.Cone_volume.value = (1/3) * Math.PI *
Math.pow(ConeRadius,2) *
ConeHeight;

}

else

{

GeoForm.Cone_surfacearea.value = "";

GeoForm.Cone_volume.value = "";

}

}

function Sphere_calc(GeoForm)

{

var SphereRadius = GeoForm.Sphere_radius.value;

if (SphereRadius >= 0)

{

GeoForm.Sphere_surfacearea.value = 4 * Math.PI *
Math.pow(SphereRadius, 2);

GeoForm.Sphere_volume.value = (4/3) * Math.PI *
Math.pow(SphereRadius, 3);

122

}

else

{

GeoForm.Sphere_surfacearea.value = "";

GeoForm.Sphere_volume.value = "";

}

}

// -->

</SCRIPT>

<FORM>

<TABLE BORDER CELLPADDING=3>

<!-- circumference and radius of a circle -->

<TR>

<TH>Circumference and Radius of a Circle
<IMG
SRC="../graphics/circle.gif"
HEIGHT=88 WIDTH=88 ALT="picture of a circle"></TH>

<TD><NOBR>radius: <INPUT NAME="Circle_radius"
SIZE=4></NOBR></TD>

<TD><INPUT TYPE=BUTTON OnClick="Circle_calc(this.form);"
VALUE="calculate"></TD>

<TD ALIGN=RIGHT BGCOLOR="#AACCFF">

<NOBR>circumference: <INPUT NAME="Circle_circumference"
SIZE=9></NOBR>

<NOBR>area: <INPUT NAME="Circle_area"
SIZE=9></NOBR></TD>

</TR>

<!-- Surface area and volume of a cone -->

<TR>

<TH>Surface Area and Volume of a Cone
<IMG
SRC="../graphics/cone.gif" HEIGHT=106 WIDTH=115 ALT="picture of
a cone"></TH>

<TD ALIGN=RIGHT><NOBR>radius: <INPUT NAME="Cone_radius"
SIZE=4></NOBR>

<NOBR>height: <INPUT NAME="Cone_height"
SIZE=4></NOBR></TD>

<TD><INPUT TYPE=BUTTON OnClick="Cone_calc(this.form);"
VALUE="calculate"></TD>

<TD ALIGN=RIGHT BGCOLOR="#AACCFF">

<NOBR>surface area: <INPUT NAME="Cone_surfacearea"
SIZE=9></NOBR>

123

<NOBR>volume: <INPUT NAME="Cone_volume"
SIZE=9></NOBR></TD>

</TR>

<!-- Surface Area and Volume of a Sphere -->

<TR>

<TH>Surface Area and Volume of a Sphere
<IMG
SRC="../graphics/sphere.gif" HEIGHT=88 WIDTH=88 ALT="picture of
a sphere"></TH>

<TD><NOBR>radius: <INPUT NAME="Sphere_radius"
SIZE=4></NOBR></TD>

<TD><INPUT TYPE=BUTTON OnClick="Sphere_calc(this.form);"
VALUE="calculate"></TD>

<TD ALIGN=RIGHT BGCOLOR="#AACCFF"><NOBR>surface area:
<INPUT NAME="Sphere_surfacearea" SIZE=9></NOBR>

<NOBR>volume: <INPUT NAME="Sphere_volume"
SIZE=9></NOBR></TD>

</TR>

</TABLE>

</FORM>

Output:

Explanation:
In the above code three functions are defined in <SCRIPT> tag namely
Circle_calc(GeoForm), Cone_calc(GeoForm), Sphere_calc(GeoForm).

Circle_calc(GeoForm) function calculates circumference and area
of a circle based on the value of radius entered by user(value of radius is
stored using the code: var CircleRadius = GeoForm.Circle_radius.value;).

124

This value of radius is used in formula to calculate circumference and area
and displayed in respective text fields.

Similarly Cone_calc(GeoForm), Sphere_calc(GeoForm) are
defined for cone and sphere.

These functions are called in the HTML code when user clicks on
calculate button for circle, cone and sphere (i.e. onclick event of calculate
button).

6.16 LABELING INPUT FILES

<LABEL ...>, an HTML 4.0 element supported by MSIE and Netscape 6,
defines a set of text that is associated with a particular form element.

<LABEL> tag takes one attribute i.e. FOR:
FOR = "text string"

If the form element that should be associated with the text
in <LABEL> can't be contained within <LABEL>, such as when the form
element in another table cell, use FOR. The value of FOR is the ID of the
form element. Note that it is not the name of the field (as given with
the NAME attribute) it is the ID as given with the ID attribute. So, for
example, this code associates the text "join mailing list?" with the
checkbox field that has the ID "joinlist":

<TABLE BORDER=1 CELLPADDING=5>
<TR> <TD><LABEL FOR="joinlist">join mailing
list?</LABEL></TD>

<TD><INPUT TYPE=CHECKBOX NAME="joinlist"
ID="joinlist"></TD>

</TR>
</TABLE>

Output:

6.17 GROUPING RELATED FIELDS

<FIELDSET>:

<FIELDSET> defines a group of form elements as being logically related.
The browser draws a box around the set of fields to indicate that they are
related. For example, a form might contain a few fields about name and
email, some fields asking for opinions, and a field for "other
comments". <FIELDSET> could be used to group those fields like this:

125

<FIELDSET>

name: <INPUT NAME="realname">

email: <INPUT NAME="email">

</FIELDSET><P>

<FIELDSET>

favorite color: <INPUT NAME="favecolor">

<INPUT TYPE=CHECKBOX NAME="onions"> like green
onions

<INPUT TYPE=CHECKBOX NAME="cookies"> like
cookies

<INPUT TYPE=CHECKBOX NAME="kimchee"> like kim
chee

</FIELDSET><P>

<FIELDSET>

other comments:

<TEXTAREA NAME="comments" ROWS=5
COLS=25></TEXTAREA>

</FIELDSET>

Output:

<LEGEND>:
<LEGEND> is used with <FIELDSET> to give a title to each set of fields.
Attribute of <LEGEND> is ALIGN. ALIGN align the <LEGEND> text
left, center, or right

<FIELDSET>

<LEGEND ALIGN=LEFT>Personal Stuff</LEGEND><P>

name: <INPUT NAME="realname">

126

email: <INPUT NAME="email">

</FIELDSET><P>

<FIELDSET>

<LEGEND ALIGN=CENTER>Survey</LEGEND><P>

favorite color: <INPUT NAME="favecolor">

<INPUT TYPE=CHECKBOX NAME="favecolor"> like green
onions

<INPUT TYPE=CHECKBOX NAME="onions"> like
cookies

<INPUT TYPE=CHECKBOX NAME="kimchee"> like kim
chee

</FIELDSET><P>

<FIELDSET>

<LEGEND ALIGN=RIGHT>Misc</LEGEND><P>

other comments:

<TEXTAREA NAME="comments" ROWS=5
COLS=25></TEXTAREA>

</FIELDSET>

Output:

127

6.18 FORM FIELD EVENT HANDLERS

Following are the event handlers which can be used with form fields:
onClick:
onClick gives the script to run when the user clicks on the
input. onClick applies to buttons (submit, reset,
and button),checkboxes, radio buttons, and form upload buttons.
onClick is mostly used with plain button type inputs:

<FORM>

<TABLE BORDER CELLPADDING=3>

<TR>

<TD><NOBR>radius: <INPUT NAME="Circle_radius"
SIZE=4></NOBR></TD>

<TD><INPUT TYPE=BUTTON OnClick="Circle_calc(this.form);"
VALUE="calculate"></TD>

<TD ALIGN=RIGHT BGCOLOR="#AACCFF">

<NOBR>circumference: <INPUT NAME="Circle_circumference"
SIZE=9></NOBR>

<NOBR>area: <INPUT NAME="Circle_area" SIZE=9></NOBR></TD>

</TR>

</TABLE>

</FORM>

onClick can return a value to possibly cancel the action the button would
normally perform. For example, we can use onClick to double check if the
user really wants to reset the form data. In this form, if you click on the
reset button, you get a dialog box asking if you really want to cancel. If
you choose "cancel", the form is not reset.
<INPUT TYPE=RESET onClick="return confirm('Are you sure you
want to reset the form?')" >

OnChange:
onChange specifies script code to run when the data in the input field
changes. onChange applies to input fields which accept text,
namely text and password fields. (<TEXTAREA> and <SELECT> fields
also use onChange.)

The onChange event is triggered when the contents of the field changes.
For example, when the user enters an email address in this form, a script
does some basic validity checking on the value entered:

<SCRIPT TYPE="text/javascript">

<!--

function checkEmail(email)

{

128

if(email.length > 0)

{

if (email.indexOf(' ') >= 0)

alert("email addresses cannot have spaces in them");

else if (email.indexOf('@') == -1)

alert("a valid email address must have an @ in it");

}

}

//-->

</SCRIPT>

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

name: <INPUT NAME="realname">

email: <INPUT NAME="email"
onChange="checkEmail(this.value)">

destination: <INPUT NAME="desination">

</FORM>

Because onChange only occurs when the value changes, the user is
only warned once about a bad value. That's generally the most desirable
way to do error checking. Even if the value is wrong, most users prefer to
be warned just once.

onFocus and onBlur:
onFocus is the event handler for when the input field gets the

focus. onBlur is the event handler for when the input field loses the focus.
The "focus" indicates which object in the window reacts to keyboard
input. If a text field has the focus, then if you type something in the
keyboard, the letters appear in that field. Focus shifts from one object to
another usually by clicking on them with the mouse or by hitting the tab
key.

An example of onFocus and onBlur used to change the status bar. Notice
that we use onFocus to give the message we want, and onBlur to change
back to the default.

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

name: <INPUT

NAME="realname"

onFocus = "window.status='Enter your name'"

onBlur = "window.status=window.defaultStatus"

>

email: <INPUT

NAME="email"

onFocus = "window.status='Enter your email address'"

129

onBlur = "window.status=window.defaultStatus"

>

<P><INPUT TYPE=SUBMIT VALUE="submit">

</FORM>

onKeyPress:
<HTML>

<HEAD>

<SCRIPT TYPE="text/javascript">

<!--

function numbersonly(myfield, e, dec)

{

var key;

var keychar;

if (window.event)

key = window.event.keyCode;

else if (e)

key = e.which;

else

return true;

keychar = String.fromCharCode(key);

// control keys

if ((key==null) || (key==0) || (key==8) ||

(key==9) || (key==13) || (key==27))

return true;

// numbers

else if ((("0123456789").indexOf(keychar) > -1))

return true;

// decimal point jump

else if (dec && (keychar == "."))

{

myfield.form.elements[dec].focus();

return false;

}

else

return false;

}

//-->

</SCRIPT>

</HEAD>

<BODY>

130

<FORM ACTION="../cgi-bin/mycgi.pl" METHOD=POST>

U.S. ZIP Code:

<INPUT NAME="dollar" SIZE=5 MAXLENGTH=5

onKeyPress="return numbersonly(this, event)">

<INPUT TYPE=SUBMIT VALUE="go">

</FORM>

</BODY>

</HTML>

In the above code whenever a user enters any value through
keyboard (i.e. typing any key), onKeyPress event handler is called. When
this event handler is triggered function numbersonly() is called which
allows only numbers to be entered.

6.19 PASSING FORM DATA

Whenever we are creating HTML forms, our objective is to
retrieve the values entered by the user. These values are called form data.
This form data can be passed to another page using method and action
attributes (discussed in <FORM> tag) of form tag. The page name
specified in form’s action attribute is the one to which form data is passed,
and then processed by this page.

<HTML>
<BODY>
<FORM ACTION="insert.php" METHOD="post">
Firstname: <INPUT TYPE="text" NAME="firstname" />
Lastname: <INPUT TYPE="text" NAME="lastname" />
Age: <INPUT TYPE="text" NAME="age" />
<INPUT TYPE="submit" />
</FORM>
</BODY>
</HTML>

In the above form user will enter first name and last name in text
boxes. When form is submitted insert.php page is called and form data
(i.e. first name and last name) is passed to this page. Passing data from
insert.html to insert.php is done through post method. Once the form data
is with insert.php, it can process the data.

6.20 SUMMARY

In this chapter we discussed role of form tag, different elements
(input, select, textarea, label, option, etc.) and their attributes that can go
within form tags. We also discussed how to use event handlers in form.

131

Answers to check your progress
1.b 2. d 3. a 4.b 5.c
6.a 7.a 8.c

6.21 EXERCISE

6.21.1 Questions
1. Explain <FORM> tag and its attributes

2. Explain text field, password field, hidden field form elements and
how they can be placed on web page.

3. How to put Drop down box in a web page?

4. Explain <fieldset> and <legend> tags in detail.

5. Explain with any four event handlers that can be used with form
fields.

6. Explain how to place radio buttons and check boxes on web page.

6.21.2 Programs

1. Design a feedback form that will have following fields:

Faculty’s name (text field), year (text field), Is professor
explaining properly: yes, no (radio button), Any Comments (text
area), submit button.

2. Design a registration form that will have following fields:

User name, password, address, phone no., Gender (male, female),
emailed, and a submit button. (Use appropriate form elements
wherever necessary)

3. Design a form that will have following fields:

A text field to enter a sting, four radio buttons for colors (red,
green, blue, yellow), and a submit button. Whenever user enters a
string, selects a color and submits the form the string should appear
in that color.



7

JAVASCRIPT

Unit Structure
7.1 Objective

7.2 Introduction

7.2.1 Client side javascript

7.2.2 Server side javascript

7.2.3 Javascript objects

7.2.4 Javascript security

7.3 Operators

7.3.1 Assignment

7.3.2 Arithmetic

7.3.3 Comparison

7.3.4 Modulus

7.3.5 Increament

7.3.6 Decreament

7.3.7 Unary negation

7.3.8 Logical operators

7.3.9 Short circuit evaluation

7.3.10 String operators

7.3.11 Special operators

7.3.12 Conditional operators

7.3.13 Comma operators

7.3.14 Delete

7.3.15 New

7.3.16 This

7.3.17 Void

7.4 Statements

7.4.1 Break

7.4.2 Comment

7.4.3 Continue

7.4.4 Delete

7.4.5 Do while

7.4.6 Export

7.4.7 For

7.4.8 For in

133

7.4.9 Function

7.4.10 If else

7.4.11 Import

7.4.12 Labelled

7.4.13 Return

7.4.14 Switch

7.4.15 Var

7.4.16 While

7.4.17 With

7.5 Core java script

7.5.1 Array

7.5.2 Boolean

7.5.6 Object

7.5.6.1 Date

7.5.6.2 Math

7.5.7 Number

7.5.8 Object

7.5.9 String

7.5.10 regExp

7.0 OBJECTIVE

After reading this chapter you will be able to –
 Write small javascrips with operators and functions .
 Use of variables, datatypes, control statements.

 Identify client and server side scripts
 Use javascript objects and their inbuilt properties.

7.1 INTRODUCTION

 Javascript is object based scripting language based on c++. Scripting
language is a light weight programming language which easy to learn
and understand. It is generally used for small applicatons.

 Javascript was basically designed to add interactivity in HTML pages
and is directly embedded into HTML.

 Javascript is free to use by anyone.

 Javascript is interpreted language ie is not precompiled before
execution. As javascript is interpreted, it is platform independent.

134

 Java is a full fledged complex programming language developed by
sun microsystem. Javascript is developed by netscape communications
and is no sub language of java.

 Javascript is originally a scripting language developed by European
Computer Manufacturer’s association (ECMA)

 Javascript that runs at the client side (ie at the client’s browser) is
client side java script (CCJS) and javascript that runs at the server is
serverside java script (SSJS)

 Javascript being object oriented, uses number of built in javascript as
well as objects can be created.

 Every object has properties and methods. Property is value(s)
associated with an object. Methods are actions associated with an
object.

 Example:<scripttype="text/javascript">
document.write("This message is written by JavaScript");

</script>
in above example, ‘document’ is object and write() is a method of
document object.

 Javascript runs in a web browser, and when a script written by a third
party is executed on the browser, there is a risk of running a spyware
or a virus program.

 Hence, each time javascript is loaded on the browser implements a
security policy designed to minimise the risk of such unknown code.

 Security policy is set of rules governing what scripts can do under
which circumstances.

 Modern javascript security is based upon Java. Scripts downloaded are
isolated from the operating system and then executed. This is known
as the ‘sandbox’ model. Some scripts are often stored randomly here
and there. And hence, many times obtain more power than expected by
design or by accident.

 Scripts in general are given limited access and more access is only
given with the user consent. Taking a consent for every execution is
not a practical solution.

 Scripts from ‘trusted’ source are many times excluded from this
consent procedure.

 A policy called ‘same origin’ does not block scripts coming from the
same origin as trusted scripts. This same origin check is performed on
all methods of windows object, also on embedded and externally
linked objects.

135

7.3 JAVASCRIPT OPERATORS

Operator Name Description Example Result Note

= Assignment Assigns value
to a variable.

y = 5;

x = y = 5;

y = 5

x=5 and

y=5

Primitive data
types get
direct values
where as
functions are
pointers to the
variables.

+= Plus equal to x += y x =10 Same as
operator equal
to. That is,
x+=y means
that x=x+y
and so on.

-= Minus equal
to

x -= y x = 0

*= Multiply
equal to

x *= y x = 25

/= Divide equal
to

x /= y x =1

%= Modulo equal
to

x %= y x = 0

Arithmetic

+ Addition Adds values x = y + 2; x=7

- Subtraction Subtracts
second from
first value

x = y – 2; x=3

* Multiplication Multiplies
two values

x = y * 2; x=10

/ Division Divides x = y / 2; x=2.5

% Modulus Divides and
gives the
remainder

x = y % 2; x=1

++ Increment Increments
value
by 1

x = ++y; x=6

-- Decrement Decrements
value by 1

x = --y; x=4

Logical

&& And Logically
ands

(x<10 &&

y>1)
TRUE As value of x

as of now is 4
and that of y is
5

|| Or Logically Ors (x==5 ||
y==5)

TRUE As value of x
<> 5 but that
of y = 5

136

! Not Negation !(x==y) TRUE As x and y are
not equal.

String

+ Concatenation Connects two
strings.

If x = “5”
and y= “5”
then

x+y=“55”

Conditional

? Variable
=(condition)?value1:value2

If a = 0, b =
7

a=(b=
=10)?5:8

a = 8,

b = 7

If condition is
satisfied, first
value is assigned,
else the second
value is assigned.

Short circuit evaluation

&& Sand Short circuit
and

If x = 0; p =
66

x=p &&

p.getvalue()

x = 66 If p is not null,
then assign value
of p to x.

|| SOr Short circuit
or

If x=0,
default=5

x=default||10

x=5 If there is a
default, assign
default; else
assign the given
value.

, Comma x=4, y= 5; x=4

y=5

Executes all
expressions from
left to right.

Delete Used in
functions

Delete
<object>

Object
undefined

Deletes the
properties from
objects and array
elements from
arrays making
them undefined.

This Can be used in following
contexts –
 As global

 Function context

Simple call

As object method

Prototype chain

 As a constructor

 As getter or setter.

this.window

return this;

return
this.value

New Creates new
instance of
the object

var x= new
Fn()

x becomes new instance of
function Fn and gets all its
properties and methods.

137

Void Evaluates
expression
and returns
undefined

Void expr Undefined.

Javascript Operators Examples
1.

Output

138

7.4 JAVASCRIPT STATEMENTS

 JavaScript is a sequence of statements to be executed by the browser.
Browser executes the statements in the same order as they are
written.

 JavaScript is case sensitive with all syntax, variable and function
names.

 The semicolon at the end of line is optional (according to the
JavaScript standard), and the browser is supposed to interpret the end
of the line as the end of the statement. However, semicolon at the
end of line is good programming practice. Also, it enables us to write
multiple statements on the same line.

 JavaScript statements can be grouped together in blocks. Blocks start
with a left curly bracket {, and end with a right curly bracket }. The
purpose of a block is to make the sequence of statements execute
together.

 A block is normally used to group the statements in a function or
condition.

 A general example of block is –

139

JavaScript Comments

 JavaScript comments can be used to make the code more readable.

 Comments can be added to explain the JavaScript.

 Comments can be added at end of a line.

 Single line comments start with //.

 Multi line comments start with /* and end with */.

 The comment is used to prevent the execution of a single code line or a
code block. This can be suitable for debugging

 Following example demonstrates use of comments in javascript code.

140

Javascript Variables (Var statement)
 Variables are "containers" for storing information. This information

can be values or expressions.

 A variable can have a short name, like x, or a more descriptive name,
like MyName.

 Rules for JavaScript variable names:

o Variable names are case sensitive (y and Y are two
different variables)

o Variable names must begin with a letter or the underscore
character

 Creating variables in JavaScript is most often referred to as "declaring"
variables.

 You declare JavaScript variables with the var keyword like var x;

 After the declaration shown above, the variables are empty (they have
no values yet). However, you can also assign values to the variables
when you declare them like var x = 10; After the execution of this
statement, the variable x will hold the value 10

 A variable declared within a JavaScript function
becomes LOCAL and can only be accessed within that function. (the
variable has local scope).

 You can have local variables with the same name in different
functions, because local variables are only recognized by the function
in which they are declared.

 Local variables are destroyed when you exit the function.

 Variables declared outside a function become GLOBAL, and all
scripts and functions on the web page can access it.

141

 Global variables are destroyed when you close the page.

 If you declare a variable, without using "var", the variable always
becomes GLOBAL.

 If you assign values to variables that have not yet been declared, the
variables will automatically be declared as global variables.

 All javascript operators can be used with variables

 Example –

142

Conditional statements
 Conditional statements are used to perform different actions based on

different conditions.

 In JavaScript we have the following conditional statements:

 If statement - This statement is used to execute some code only if a
specified condition is true.

o Syntax:
if(condition)

{
code to be executed if condition is

true
}

 If...else statement - This statement is used to execute some code
if the condition is true and another code if the condition is false

o Syntax:
if (condition)
{

code to be executed if condition is
true
}

else
{
code to be executed if condition is

not true
}

 If...else if....else statement - This statement is used to select one of
many blocks of code to be executed

o Syntax:
if (condition1)
{
code to be executed if condition1 is

true
}

else if (condition2)
{
code to be executed if condition2 is

true
}

else
{
code to be executed if neither

condition1 nor condition2 is true
}

143

Example

Output

 switch statement -This statement is another way to select one of many
blocks of code to be executed.

o Syntax -
switch(n)
{
case 1:
execute code block 1
break;

case 2:
execute code block 2
break;

default:
code to be executed if n is different

from case 1 and 2
}

144

Example:

Output

Loop statements

145

 Loops execute a block of code a specified number of times, or while a
specified condition is true.

 Often when you write code, you want the same block of code to run
over and over again in a row. Instead of adding several almost equal
lines in a script we can use loops to perform a task like this.

 In JavaScript, there are two different kind of loops:

o for - loops through a block of code a specified number of
times. It can be used only when it is known in advance,
how many times we have to run the loop.

o while - loops through a block of code while a specified
condition is true.

 For Loop Syntax:

for
(variable=startvalue;variable<=endvalue;variabl
e=variable+increment)
{
code to be executed
}

 Example:

Javascript given below will print 5 numbers. Each time, value of the
variable is incremented by 1.

146

 While loop syntax
while (var<=endvalue)
{
code to be executed
}

 While loop can be used with any comparison operator.
 Do While loop is a variation to the while loop. In this case block will

be executed at least once, as the statements are executed before the
condition is tested. Syntax for do while is as follows –

do
{
code to be executed
}

while (var<=endvalue);
 Consider the example where number is printed after incrementing

it by 1. This is performed while the number is less than or equal to
5. Script and the outputs with while and do while loop are as given
below –

<html>
<body>
<script type="text/javascript">
var i=6;
do
{
document.write("The number is " + i);
document.write("
");
i++;
}

while (i<=5);

147

</script>
</body>
</html>

 Changes in script with just while loop and corresponding output --
while (i<=5)
{
document.write("The number is " + i);
document.write("
");
i++;

}
document.write(“value of i is printed
outside the loop”);
document.write(“
\” + i);

148

Break and Continue statement in javascript

 The break statement will break the loop and continue executing the
code that follows after the loop (if any).

 The continue statement will break the current loop and continue
with the next value.

Function
 Function is a segment of program that performs a given task.

 A function contains code that will be executed by an event or by a call
to the function.

 You may call a function from anywhere within a page (or even from
other pages if the function is embedded in an external javascript file).

 Functions can be defined both in the <head> and in the <body> section
of a document.

149

 However, to assure that a function is read/loaded by the browser
before it is called, it should be put functions in the <head> section.

 Syntax of the function is as follows –

function functionname(var1,var2,...,varX)
{
some code
}

 Function always includes parenthesis after the name of function ‘()’

 Function calls are case sensitive as javascript is case sensitive.

 The return statement is used to specify the value that is returned from
the function.

So, functions that are going to return a value must use the return
statement.

 If a variable is declared using "var", within a function, the variable can
only be accessed within that function.

 The variable is destroyed once function call is over. These variables
are called local variables. Local variables can have the same name in
different functions, because each is recognized only by the function in
which it is declared.

 If a variable is declared outside a function, all the functions on your
page can access it.

 The lifetime of these variables starts when they are declared, and ends
when the page is closed.

 Following is an example of function. Function products computes and
returns product of variables a and b.

 Basic advantage of using a function is reusability. Same task can be
performed again and again simply by calling the function which
performs the task.

150

Example:

7.5 CORE JAVASCRIPT

Data Types are classified as primitive data types and composite data types.
Composite Data types -
 Numbers - are values that can be processed and calculated. The

numbers can be either positive or negative. Javascript integer can have
three base values – 10 (decimal), 8(octal) or 16(hexadecimal). Number
can be integer or floating point number.

151

 Strings - are a series of letters and numbers enclosed in single or
double quotation marks. Strings are used for text to be displayed or
values to be passed along.

 Some characters that you may want in a string may not exist on the
keyboard, or may be special characters that can't appear as themselves
in a string.

 In order to put these characters in a string, you need to use an escape
sequence to represent the character. An escape sequence is a character
or numeric value representing a character that is preceded by a
backslash (\) to indicate that it is a special character.

Some escaped characters are as follows:

Escape
Sequence

Character

\b Backspace.
\t Tab. Tabs behave erratically on the Web and are best

avoided, but sometimes you need them.
\n New line (\u0000a). Inserts a line break at the point

specified. It is a combination of the carriage return (\r) and
the form feed (\f).

\" Double quote.
\' Single quote, or an apostrophe, such as in can\'t.
\\ The backslash, since by itself it is a command.

 Boolean (true/false) - lets you evaluate whether a condition meets or
does not meet specified criteria.

 Null - is an empty value. null is not the same as 0 -- 0 is a real,
calculable number, whereas null is the absence of any value. An empty
string is distinct from null value.

 NAN – Some javascript functions return a special value called not a
number.

Primitive Data Types –
Object –
 An object is a collection of named values, called the properties of that

object. Functions associated with an object are referred to as the
methods of that object.

152

 Properties and methods of objects are referred to with a dot(.) notation
that starts with the name of the object and ends with the name of the
property. For instance
image.src.

 Normally in objects there are only two nodes, the object and the
property, but sometimes the properties can have properties of their
own, creating an object tree.

 For instance, document.form1.namefield.

 Objects in JavaScript can be treated as associative arrays. This means
that image.src and image['src'] are equivalent.

 JavaScript has many predefined objects, such as a Date object and a
Math object. These are used much as function libraries are used in a
language like C.

 They contain a collection of useful methods that are predefined and
ready for use in any JavaScript code you may write.

Date Object –

 The Date object is used to work with dates and times.

 Date objects are created with new Date().

 There are four ways of instantiating a date:

var d = new Date();
var d = new Date(milliseconds);
var d = new Date(dateString);
var d = new Date(year, month, day, hours,
minutes,

seconds, milliseconds);
 Some javascript predefined methods are –

 getDate() Returns the day of the month (from 1-31)

 getDay() Returns the day of the week (from 0-6)

 getFullYear() Returns the year (four digits)

 getHours() Returns the hour (from 0-23)

 getMilliseconds() Returns the milliseconds (from 0-999)

 getMinutes() Returns the minutes (from 0-59)

 getMonth() Returns the month (from 0-11)

 getSeconds() Returns the seconds (from 0-59)

 getTime() Returns the number of milliseconds since
midnight Jan 1, 1970

153

 getTimezoneOffset() Returns the time difference between
GMT and local time, in minutes

 getYear() Deprecated. Use the

 getFullYear() method instead

 parse() Parses a date string and returns the number of
milliseconds since midnight of January 1, 1970

 setDate() Sets the day of the month (from 1-31)

 setHours() Sets the hour (from 0-23)

 setMilliseconds() Sets the milliseconds (from 0-999)

 setMinutes() Set the minutes (from 0-59)

 setMonth() Sets the month (from 0-11)

 setSeconds() Sets the seconds (from 0-59)

 setTime() Sets a date and time by adding or subtracting a
specified number of milliseconds to/from midnight January
1, 1970

 toString() Converts a Date object to a string

 toTimeString() Converts the time portion of a Date object
to a string

 toUTCString() Converts a Date object to a string,
according to universal time

 valueOf() Returns the primitive value of a Date object

Math object –
 The Math object allows you to perform mathematical tasks.

 The Math object includes several mathematical constants and methods.
 round() – rounds the number to nearest integer value.
 random() - returns a random number between 0 and 1.
 max() - returns the number with the highest value of two specified

numbers.
 min() - returns the number with the lowest value of two specified

numbers.

154

Array –
 An Array is an ordered collection of data values.

 In JavaScript, an array is just an object that has an index to refer to its
contents. In other words, the fields in the array are numbered, and you
can refer to the number position of the field.

 The array index is included in square brackets immediately after the
array name. In JavaScript, the array index starts with zero, so the first
element in an array would be arrayName[0], and the third would be
arrayName[2].

 JavaScript does not have multi-dimensional arrays, but you can nest
them, which is to say, an array element can contain another array.

 You access them listing the array numbers starting for the outmost
array and working inward. Therefore, the third element (position 2) of
or inside the ninth element (position 8) would be arrayName[8][2].

7.6 Summary
 JavaScript is light weighted programming language used for small

applications.

 Javascrit is object based programming language made in C++.

 Javascript can be executed either on client side browser or on server
side browser.

 Javascripts can be downloaded and run and carry a threat of virus
attack. Security of javascript depends upon the security of java
language. The process of executing the javascript code after isolating it
from the operating system is called ‘sandbox’ model.

 Different types of javascript operators help perform various arithmetic,
logical, string and other types of functions.

 Browser sequentially executes javascript statements of various types
such as conditional and loop

 statements. Some of loop statements are while, dowhile, switch
statement etc.

 Number, Boolean, string are few data types used in javascript.

155

7.7 EXERCISE

1. Define javascript. How is it used?

2. explain the difference between client side and server side javascript.

3. explain how virus threat from javascript is avoided?

4. write a javascript to find greatest of three given numbers

5. write a javascript to print the month if numeric value for the month is
given (eg January

for 1 and so on)

6. write a javascript to print all prime numbers from 1 to 100 in reverse
order.

7. write a javascipt to print reverse of a number.

8. explain what is an object in javascript. Describe the date and math
object with at least two

properties each.

9. explain the difference between String”” and null value

10. discuss what is a function? Does it always return a value? Give
example of at least one

function.

11. what is an array? How is it used in javascript?

12. explain how a date value can be converted into a string value and vice
versa.



8

JAVASCRIPT – 2

Unit Structure
8.0 Objective

8.1 Document and associated objects

8.1.1 Document

8.1.2 Link

8.1.3 Area

8.1.4 Anchor

8.1.5 Image

8.1.6 Applet

8.1.7 Layer

8.2 Events and Event Handlers

8.2.1 General information about events

8.2.2 Defining event handlers

8.3 Event

8.3.1 onAbort

8.3.2 onBlur

8.3.3 onChange

8.3.4 onClick

8.3.5 onDblClick

8.3.6 onDragDrop

8.3.7 onError

8.3.8 onFocus

8.3.9 onKeyDown

8.3.10 onKeyPress

8.3.11 onKeyUp

8.3.12 onLoad

8.3.13 onMouseDown

8.3.14 onMouseMove

8.3.15 onMouseOut

157

8.3.16 onMouseOver

8.3.17 onMouseUp

8.3.18 onMove

8.3.19 onReset

8.3.20 onResize

8.3.21 onSelect

8.3.22 onSubmit

8.3.23 onUnload

8.1 OBJECTIVE

After reading this chapter you will be able to -
 Understand the use of document object and other objects associated

with the document object.
 Understand and use the properties and methods and to use common

properties and methods.
 Understand and use objects such as area, anchor, link etc. and

properties and methods associated with these objects.
 Write javascripts using the above properties and methods.

 Understand the concept of event and event handlers.
 Understand the use of each event associated with the document

object.

8.1 DOCUMENT AND ASSOCIATED OBJECTS

8.1.1 Document

 Each HTML document loaded into a browser window becomes a
Document object.

 The Document object provides access to all HTML elements in a
page, from within a script.

 The Document object is also part of the Window object, and can be
accessed through the ‘window.document’ property.

 Document object is part of document object model.

 This model has a fixed hierarchy, where topmost object in the
hierarchy is Browser itself.

 After browser window object and inside window, as shown below,
comes the document object.

 Relation of document object to the window object can be depicted in
the fig given below –

158

|-> Document
|-> Anchor
|-> Link
|-> Images
|-> Tags
|-> Form

|-> Text-box
|-> Text Area
|-> Radio Button
|-> Check Box
|-> Select
|-> Button

Fig 8.1 Document Object and Window object Fig 8.2 Hierarchy in Document Object

 Document object has following properties and methods

Properties –
 cookie Returns all name/value pairs of cookies in the document
 documentMode Returns the mode used by the browser to render

the document

 domain Returns the domain name of the server that loaded the
document

 lastModified Returns the date and time the document was last
modified

 readyState Returns the (loading) status of the document
 referrer Returns the URL of the document that loaded the current

document
 title Sets or returns the title of the document
 URL Returns the full URL of the document

Methods –
 close() Closes the output stream previously opened with

document.open()
 getElementById() Accesses the first element with the specified id

 getElementsByName() Accesses all elements with a specified
name

 getElementsByTagName() Accesses all elements with a specified
tagname

 open() Opens an output stream to collect the output from
document.write() or document.writeln()

 write() Writes HTML expressions or JavaScript code to a
document

 writeln() Same as write(), but adds a newline character after each
statement Yes

159

Following examples demonstrates use of some properties and methods of
document object.

Fig 8.3 Script and output Demonstrating write method and title
property of Document object.

160

Fig 8.4 Script Demonstrating the Document.open() method to
open a textstream

Fig 8.5 Output of the script Before and After Clicking the ‘New
Document’ button.

161

8.1.2 Link

 The Link object represents an HTML link element.

 The link element must be placed inside the head section of an HTML
document, and it specifies a link to an external resource.

 In other words, link tag defines how a click on object can redirect or
take the browser window to a new location specified by the address
specified.

 A common use of the <link> tag is to link to external style sheets.

 Some of the properties of javascript link objects are as given below—

charset: - Sets or returns the character encoding of a linked
document

href: - Sets or returns the URL of a linked document

hreflang :- Sets or returns the language code of the linked document

media: - Sets or returns the media type for the link element

type : - Sets or returns the content type of the linked document

 In addition to above properties, link object supports all standard
properties like id, length, chartype etc.

162

Fig 8.6 Script and Outputs Demonstrating length property of link

8.1.3 Area

 The Area object represents an area inside an HTML image-map (an
image-map is an image with clickable areas).

 For each <area> tag in an HTML document, an Area object is created.

 In addition to standard properties and methods, javascript area object
supports following properties –

alt Sets or returns the value of the alt attribute of an area

coords Sets or returns the value of the coords attribute of an area

hash Sets or returns the anchor part of the href attribute value

host Sets or returns the hostname:port part of the href attribute
value

hostname Sets or returns the hostname part of the href attribute
value

href Sets or returns the value of the href attribute of an area

noHref Sets or returns the value of the nohref attribute of an area

pathname Sets or returns the pathname part of the href attribute
value

port Sets or returns the port part of the href attribute value

protocol Sets or returns the protocol part of the href attribute value

search Sets or returns the querystring part of the href attribute
value

shape Sets or returns the value of the shape attribute of an area

target Sets or returns the value of the target attribute of an area

163

 Following example shows an image map and returns the shape of
an area marked in the image map.

Fig 8.7 Script and output Demonstrating Area object.

8.1.4 Anchor

 The Anchor object represents an HTML hyperlink.

 For each <a> tag in an HTML document, an Anchor object is
created.

 An anchor allows you to create a link to another document (with
the href attribute), or to a different point in the same document
(with the name attribute).

164

 You can access an anchor by using getElementById(), or by
searching through the anchors[] array of the Document object.

 In addition to standard properties and methods, javascript anchor
object supports following properties –

charset Sets or returns the value of the charset attribute of a link

href Sets or returns the value of the href attribute of a link

hreflang Sets or returns the value of the hreflang attribute of a link

name Sets or returns the value of the name attribute of a link

rel Sets or returns the value of the rel attribute of a link

rev Sets or returns the value of the rev attribute of a link

target Sets or returns the value of the target attribute of a link

type Sets or returns the value of the type attribute of a link

 Following example shows anchor tag used in a web page.

Fig 8.8 Script For demonstrating anchor object

165

align Sets or returns the value of the align attribute of an image
alt Sets or returns the value of the alt attribute of an image
border Sets or returns the value of the border attribute of an

image
complete Returns whether or not the browser is finished loading an

image
height Sets or returns the value of the height attribute of an

image
hspace Sets or returns the value of the hspace attribute of an

image
longDesc Sets or returns the value of the longdesc attribute of an

image
lowsrc Sets or returns a URL to a low-resolution version of an

image
name Sets or returns the name of an image
src Sets or returns the value of the src attribute of an image
useMap Sets or returns the value of the usemap attribute of an

image
vspace Sets or returns the value of the vspace attribute of an

image
width Sets or returns the value of the width attribute of an

image

166

Fig 8.9 Before and after using the anchor link.

 After the anchor is used URL of browser changed to
‘file:///c:/AnchorDemo.html#C6’, as c6 is used as an anchor.

8.1.5 Image

 The Image object represents an embedded image.

 For each tag in an HTML document, an Image object is
created.

 Notice that images are not technically inserted into an HTML
page, images are linked to HTML pages. The tag creates a
holding space for the referenced image.

 Image object, in addition to the standard properties and methods,
supports following properties and events.

 Image Object Events

onabort Loading of an image is interrupted
onerror An error occurs when loading an image
onload An image is finished loading

167

 Following is the example of some properties of image object and
javascript functions used to change these properties.

 Function changesize changes the height and width of the image
object and function addBorder adds border to the image.

 Similarly, we can also change the image by using the src attribute
of image tag.

 Alt attribute gives the text to be displayed, if the image can not be
displayed.

 Also, a lower version of image to speed up loading, can be shown
using a lowsrc option attribute.

Example:

Fig 8.10 source code for demonstrating some image properties and attributes.

Fig 8.11 Before click of the command button objects

168

Fig 8.12 After click of the command buttons, border added and a
increased sized image.

8.1.6 Applet

 Applet tag was used in earlier version of HTML (HTML4) to
embed an java applet in a browser. It is not supported in HTML
5.0 and is replaced by the object tag.

 The <object> tag defines an embedded object within an HTML
document. It is used to embed multimedia (like audio, video, Java
applets, ActiveX, PDF, and Flash) in your web pages.

 You can also use the <object> tag to embed another webpage into
your HTML document.

 You can use the <param> tag to pass parameters to plugins that
have been embedded using the <object> tag.

 An object element must appear inside the body element. The text
between the <object> and </object> is an alternate text, for
browsers that do not support this tag.

169

 At least one of the "data" and "type" attributes MUST be defined
where data specifies a URL that refers to the object's data and type
Specifies the MIME type of data specified in the data attribute.
(Multipurpose Internet Mail Extensions (MIME) is an Internet
standard that extends the format of email to support Text
in character sets other than ASCII, Non-text attachments, Message
bodies with multiple parts, Header information in non-ASCII
character sets.

8. 2 EVENTS AND EVENT HANDLERS

8.2.1 General information about events
 Events are actions that can be detected by JavaScript.
 Every element on a web page has certain events which can trigger

a JavaScript.
 For example, we can use the onClick event of a button element to

indicate that a function will run when a user clicks on the button.

 Examples of events:
o A mouse click
o A web page or an image loading
o Mousing over a hot spot on the web page
o Selecting an input field in an HTML form
o Submitting an HTML form
o A keystroke

 Events are normally used in combination with functions, and the
function will not be executed before the event occurs!

8.2.2 Defining event handlers

 They are JavaScript code that are not added inside the <script> tags,
but rather, inside the html tags, that execute JavaScript when
something happens, such as pressing a button, moving your mouse
over a link, submitting a form etc.

 The basic syntax of these event handlers is:

name_of_handler="JavaScript code here"
 For example:

<a href="http://google.com"
onClick="alert('hello!')">Google

 When events are associated with functions, the functions are written in
the head section within the <script> tag and are called from the event
handlers.

170

Example :
<html>
<body>
<h1 onclick="this.innerHTML='Welcome to
EventHandlers'">Click on this text</h1>
</body>
</html>

 This code will generate following output –

Fig 8.12 Event Handler and after event is called.

8.3 EVENT

Following is the list of events used by various javascript objects and when
are these events triggered.

Attribute The event occurs when...
onabort Page is not finished loading
onblur An element loses focus
onchange The content of a field changes
onclick Mouse clicks an object
ondblclick Mouse double-clicks an object
ondragdrop A user drops an object
onerror An error occurs when loading a document or

an image

171

onfocus An element gets focus
onkeydown A keyboard key is pressed
onkeypress A keyboard key is pressed or held down
onkeyup A keyboard key is released
onload A page or image is finished loading
onmousedown A mouse button is pressed
onmousemove The mouse is moved
onmouseout The mouse is moved off an element
onmouseover The mouse is moved over an element
onmouseup A mouse button is released
onmove The position of top left corner of an object is

moved.
onresize A window or frame is resized
onreset Reset button on the form is clicked.
onselect Text is selected
onsubmit Validate all form fields before submitting it.
onunload The user exits the page

 Following is an example which shows onmouseover event to give
different messages for different parts of an imagemap.

Fig 8.13 Script to demonstrate onmouseover event and its event
handler

172

Fig 8.14 Newly Loaded page

Fig 8.15 cursor on the sun.

Fig 8.16 Cursor pointing to mercury

173

Fig 8.17 Cursor pointing venus.

8.4 EXERCISES

1. Define document object. What are the objects associated with
document.

2. which are the different methods associated with document object.

3. write a javascript to write a message “Welcome to the Document
object” using the write method of document object.

4. list the objects associated with form object.

5. Explain what is link object? What is the use of link object? State any
two properties of this object.

6. List various properties of Area tag. What is the use of shape property
of area object? Explain how is it used with an example.

7. What is anchor? How is it used in a document object?

8. Define an event. What is event handler? Explain how event handler
is used.

9. Explain how a function can be used as event handler?

10. Write a javascript with at least three functions to demonstrate use of
onmousemove and onmouseover event.

11. Write a javascript to display a message “welcome to scripting” when
a button labled “hello” is clicked. Display a message “Thank you for
using scripting” when the same button is doubleclicked.

12. Write a javascript code to display a text “Image can not be displayed
in current browser setting” if a image used in script can not be
disaplyed.



9

XML

Unit Structure
9.0. Objective

9.1. Introduction to XML

9.2. Anatomy of an XML Document

9.3. Creating XML Documents

9.4. XML DTDs

9.5. XML Schemas

9.6. XSL

9.7. Exercise

9.0. OBJECTIVE

After going through this chapter you will be able to:

 Explain the purpose of XML

 Identify benefits of using XML

 Explain the format of XML document

 Identify different built-in data types

 Identify XML syntax rules

 Explain role of DTDs and how to create DTDs

 Explain what is XML Schema

 Identify the importance of XSL

9.1. INTRODUCTION TO XML

XML (extensible Markup Language) is a meta-language; that is, it is a
language in which other languages are created. In XML, data is "marked
up" with tags, similar to HTML tags. In fact, the latest version of HTML,
called XHTML, is an XML-based language, which means that XHTML
follows the syntax rules of XML.

XML was designed to describe data. XML is used to store data or
information. This data might be intended to be by read by people or by
machines. It can be highly structured data such as data typically stored in

175

databases or spreadsheets, or loosely structured data, such as data stored in
letters or manuals. XML tags are not predefined in XML. You must define
your own tags. XML uses a DTD (Document Type Definition) to
formally describe the data.

The main difference between XML and HTML
1. XML is not a replacement for HTML.

XML and HTML were designed with different goals:
a. XML was designed to describe data and to focus on what

data is.
b. HTML was designed to display data and to focus on how

data looks.
2. HTML is about displaying information, XML is about describing

information.

XML Benefits

When you write an HTML document, you see a nicely formatted page
in a browser - instant satisfaction. When you write an XML document,
you see an XML document (not the output) - not so exciting.

1. XML Holds Data, Nothing More

XML does not really do much of anything. Rather, developers can
create XML-based languages that store data in a structure way.
Applications can then use this data to do any number of things.

2. XML Separates Structure from Formatting

One of the difficulties with HTML documents, word processor
documents, spreadsheets, and other forms of documents is that
they mix structure with formatting. This makes it difficult to
manage content and design, because the two are mix together.

In HTML, there is a <U> tag used for underlining text. It is also
used for emphasis, or to mark a unit title. It would be very difficult
to write an application that searches through such a document for
unit titles.

In XML, the book titles could be placed in <UNIT_TITLE> tags
and the emphasized text could be place in tags.

3. XML Promotes Data Sharing

Applications that hold data using different structures must share
data with one another. It can be very difficult for a developer to
map the different data structures to each other. XML can solve this
problem. Each application's data structure is mapped to an agreed-
upon XML structure. Then all the applications share data in this
XML format. Each application only has to know two structures, its
own and the XML structure, to be able to share data with many
other applications.

176

4. XML is Human-Readable

XML documents are (or can be) read by people as data stored in a
database. It is not easy to browse through a database and read
different segments of it as you would a text file. Given below is an
XML document (person.xml):

<?XML version="1.0"?>

<PERSON>

<NAME>

<FIRSTNAME>Raj</FIRSTNAME>

<LASTNAME>Mehra</LASTNAME>

</NAME>

<JOB>Software Engineer</JOB>

<GENDER>Male</GENDER>

</PERSON>

Code Explanation

Above XML is describing a person named Raj Mehra, who is a
software engineer and is male.

5. XML is Free

XML doesn't cost anything to use. It can be written with a simple
text editor or one of the many freely available XML authoring
tools, such as XML Notepad. In addition, many web development
tools, such as Dreamweaver and Visual Studio .NET have built-in
XML support. There are also many free XML parsers, such as
Microsoft's MSXML (downloadable from microsoft.com) and
Xerces (downloadable at apache.org).

Let us see the progress:
1. _______ was designed to display data and to focus on how data

looks.
a. HTML b. SGML c. XML d. XHTML

2. XML separates ___________ from formatting
a. data b. document c. structure d. table

9.2. ANATOMY OF AN XML DOCUMENT

An XML document is made up of the following parts:

1. The Prolog (optional)

The prolog of an XML document can contain the following items.

 The XML Declaration

177

The XML declaration, if it appears at all, must appear on the very
first line of the document with no preceding white space. It looks
like this:

<?XML VERSION="1.0" ENCODING="UTF-8"
STANDALONE="yes"?>

This declares that the document is an XML document. The version
attribute is required, but the encoding and standalone attributes are
not. If the XML document uses any markup declarations that set
defaults for attributes or declare entities then standalone must be
set to no.

 Processing Instructions

Processing instructions are used to pass parameters to an
application. These parameters tell the application how to process
the XML document. For example, the following processing
instruction tells the application that it should transform the XML
document using the XSL stylesheet artist.xsl

<?XML-STYLESHEETHREF="artist.xsl"
TYPE="text/xsl"?>

As shown above, processing instructions begin with and <? end
with ?>.

 Comments

Comments can appear throughout an XML document. Like in
HTML, they begin with <!-- and end with -->.

<!--This is a comment-->

 A Document Type Declaration

The Document Type Declaration (or DOCTYPE Declaration) has
three roles.

1. It specifies the name of the document element.

2. It may point to an external Document Type Definition (DTD).

3. It may contain an internal DTD.

The DOCTYPE Declaration shown below simply states that the
document element of the XML document is artists.

<!DOCTYPE ARTISTS>

If a DOCTYPE Declaration points to an external DTD, it must
either specify that the DTD is on the same system as the XML
document itself using SYSTEM keyword or that it is in some
public location using PUBLIC keyword. It then points to the
location of the DTD using a relative Uniform Resource Indicator
(URI) or an absolute URI.

Syntax: <!--DTD is on the same system as the XML document-->

<!DOCTYPE ARTISTS SYSTEM "dtds/artists.dtd">

178

Syntax: <!--DTD is publicly available-->

<!DOCTYPE ARTISTS PUBLIC "-
//freespace//DTD artists 1.0//EN"
"http://www.freespace.com/artists/DTD/artists.dtd"
>

In the second declaration above, public identifiers are divided into
three parts:

1. An Organization (E.g., Freespace)
2. A Name for the DTD (E.g., Artists 1.0)
3. A Language (E.g., EN for English)

Prolog (optional)

XML Declaration <?XML VERSION="1.0"
ENCODING="UTF-8"
STANDALONE="no"?>

Document Type Definition (DTD) <!DOCTYPE DOCUMENT
SYSTEM “tts.dtd">

Comment <!-- Here is a comment -->

Processing Instructions <?XML-STYLESHEET
TYPE="text/css"
HREF="myStyles.css"?>

White Space

2. The Document Element (usually containing nested elements)
 Document / Root Element

Every XML document must have at least one element, called the
document/root element. The document element usually contains
other elements, which contain other elements, and so on. Elements
are denoted with tags. Consider again person.xml which we
discussed earlier.

<?XML VERSION="1.0"?>
<PERSON>
<NAME>
<FIRSTNAME>Raj</FIRSTNAME>
<LASTNAME>Mehra</LASTNAME>

</NAME>
<JOB>Singer</JOB>
<GENDER>Male</GENDER>
</PERSON>

Code Explanation
The document / root element is PERSON. It contains three
elements: NAME, JOB and GENDER. Further, the NAME
element contains two elements of its own: FIRSTNAME and
LASTNAME. As you can see, XML elements are denoted with

179

tags, just as in HTML. Elements that are nested within another
element are said to be children of that element.

 Empty Elements
In XML all elements might not contain other elements or text. E.g.,
in HTML, there is element / tag used to display an image.
It does not contain any text or elements / tags within it, so it is
called an empty element. In XML, empty elements must be closed,
but they do not require a separate close tag. Instead, they can be
closed with a forward slash at the end of the open tag as shown
below:

The above code is identical in function to the code below:

Elements & Content (required)

Root Element Opening Tag <TTS>

Child Elements and Content <TT><name>XML </NAME>

<URL>http://www.myserver.com/xml/
tt</URL></TT>

<TT> <NAME>HTML </NAME>

<URL>http://www.myserver.com/html
/tt</URL></TT>

Root Element Closing Tag </TTS>

 Attributes

XML elements can be further defined with attributes, which
appear inside of the element's open tag as shown below:

<NAME TITLE="SoftwareEngineer">

<FIRSTNAME>Raj</FIRSTNAME>

<LASTNAME>Mehra</LASTNAME>

</NAME>

Here TITLE is an attribute of NAME element.
 CDATA

Sometimes it is necessary to include sections in an XML
document that should not be parsed by the XML parser. These
sections might contain content that will confuse the XML
parser, perhaps because it contains content that appears to be
XML, but is not meant to be interpreted as XML. Such content
must be nested in CDATA sections. The syntax for CDATA
sections is shown below:

<![CDATA[

This section will not get parsed by the XML parser.

]]>

180

 White Space

In XML data, there are only four white space characters. They are:

1. Tab

2. Line-feed

3. Carriage-return

4. Single space

There are several important rules to remember with regards to
white space in XML:

1. White space within the content of an element is important;
that is, the XML processor will pass these characters to the
application or user agent.

2. White space in attributes is normalized; that is, neighboring
white spaces are reduced to a single space.

3. White space in between elements is ignored.

 XML Syntax Rules

XML has relatively straightforward, but very strict, syntax
rules. A document that follows these syntax rules is said to be
well-formed.

1. There must be one and only one document element.

2. Every open tag must be closed.

3. If an element is empty, it still must be closed.

o Poorly-formed: <TAG>

o Well-formed: <TAG></TAG>

o Also well-formed: <TAG />

4. Elements must be properly nested:

o Poorly-formed: <A>

o Well-formed: <A>

5. Tag and attribute names are case sensitive.

6. Attribute values must be enclosed in single or double
quotes.

 Special Characters

There are five special characters that cannot be included in
XML documents. These characters are replaced with
predefined entity references as shown in the table below:

Character Entity Reference
< <
> >
& &
" "
' '

181

3. Comments or Processing Instructions (optional)
Comments can appear throughout an XML document. Like in
HTML, they begin with <!-- and end with -->.

<!--This is a comment-->
Processing instructions are used to pass parameters to an
application. These parameters tell the application how to process
the XML document. For example, the following processing
instruction tells the application that it should transform the XML
document using the XSL stylesheet artist.xsl

<?XML-STYLESHEET HREF="artist.xsl"
TYPE="text/xsl"?>
As shown above, processing instructions begin with and <? end
with ?>.

Let us see the progress:
3. DTD has how many roles in XML document
a. 2 b. 3 c. 4 d.1

4. White space is a prolog.
a. True b. False

5. Which section of XML document will not be parsed by XML
parser?

a. CDATA b. PCDATA c. DATA d. CPDATA

9.3. CREATING XML DOCUMENTS

The following is relatively simple XML file describing the Artists:

Artists.xml
<?XML VERSION="1.0"?>

<ARTISTS>

<ARTIST SITE="http://www.rajmehra.com">

<NAME>
<FIRSTNAME>Raj</FIRSTNAME>

<LASTNAME>Mehra</LASTNAME>

</NAME>

</ARTIST>

<ARTIST SITE="http://www.ajayverma.com">

<NAME>

<FIRSTNAME>Ajay</FIRSTNAME>

<LASTNAME>Verma</LASTNAME>

</NAME>

</ARTIST >

<ARTIST SITE="http://www.kapilsharma.com">

<NAME>

182

<FIRSTNAME>Kapil</FIRSTNAME>

<LASTNAME>Sharma</LASTNAME>

</NAME>

</ARTIST >

<ARTIST SITE="http://www.rajivmalani.com"
NATIONAL="no">

<NAME>

<FIRSTNAME>Rajiv</FIRSTNAME>

<LASTNAME>malani</LASTNAME>

</NAME>

</ARTIST>
</ARTISTS>

Code Explanation
In above document root element is ARTISTS. ARTISTS’ element

has one child element ARTIST. ARTIST also has one child element
NAME. NAME has two child elements FIRSTNAME and LASTNAME.
We can also observe that ARTIST element has two attributes SITE and
NATIONAL.

9.4. XML DTDs

A Document Type Definition (DTD) is a type of schema. The purpose
of DTDs is to provide a framework for validating XML documents. By
defining a structure that XML documents must conform to, DTDs allow
different organizations to create shareable data files.

Well-formed vs. Valid

1. A well-formed XML document is one that follows the syntax rules
described in "XML Syntax Rules".

2. A valid XML document is one that conforms to a specified structure.

3. For an XML document to be validated, it must be checked against a
schema (document that defines the structure for a class of XML
documents).

4. XML documents that are not intended to conform to a schema can be
well-formed, but they cannot be valid.

Creating DTDs
DTDs are simple text files that can be created with any basic text editor. A
DTD outlines what elements can be in an XML document and the
attributes and sub-elements that they can take. Let's start by taking a look
at a complete DTD and then dissecting it.

183

Artists.dtd
<!ELEMENT ARTISTS (ARTIST+)>
<!ELEMENT ARTIST (NAME)>
<!ATTLIST ARTIST
SITE CDATA #IMPLIED
NATIONAL (yes|no) "yes">
<!ELEMENT NAME (FIRSTNAME, LASTNAME)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT LASTNAME (#PCDATA)>

The Document Element
When creating a DTD, the first step is to define the document element.

<!ELEMENT ARTISTS (ARTIST+)>

The element declaration above states that the ARTISTS element must
contain one or more ARTIST elements.

Child Elements
When defining child elements in DTDs, you can specify how many times
those elements can appear by adding a modifier after the element name. If
no modifier is added, the element must appear once and only once. The
other options are shown in the table below:

Modifier Description
? Zero or One Times.
+ One or More Times.
* Zero or More Times.

Other Elements
The other elements are declared in the same way as the document

element - with the <!ELEMENT> declaration. The ARTISTS DTD
declares four additional elements.

Each ARTIST element must contain a child element NAME, which must
appear once and only once.

<!ELEMENT ARTIST (NAME)>

Each NAME element must contain a FIRSTNAME and LASTNAME
element, which each must appear once and only once and in that order.

<!ELEMENT NAME (FIRSTNAME, LASTNAME)>

Some elements contain only text. This is declared in a DTD as
#PCDATA. PCDATA stands for parsed character data, meaning that the
data will be parsed for XML tags and entities. The FIRSTNAME and
LASTNAME elements contain only text.

<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT LASTNAME (#PCDATA)>

184

Choice of Elements
It is also possible to indicate that one of several elements may

appear as a child element. E.g., the declaration below indicates that an
IMG element may have a child element NAME or a child element ID, but
not both.

<!ELEMENT IMG (NAME|ID)>

Empty Elements
Empty elements are declared as follows.

<!ELEMENT IMG EMPTY>

Mixed Content
Sometimes elements can have elements and text mixed. E.g., the

following declaration is for a BODY element that may contain text in
addition to any number of LINK and IMG elements.

<!ELEMENT BODY (#PCDATA | LINK | IMG)*>

Location of Modifier
The location of modifiers in a declaration is important. If the

modifier is outside of a set of parentheses, it applies to the group; whereas,
if the modifier is immediately next to an element name, it applies only to
that element.

The following examples illustrate:
<!ELEMENT BODY (LINK* | IMG*)>

the BODY element can have any number of child LINK and IMG
elements, but they must come in pairs, with the LINK element
preceding the IMG element

<!ELEMENT BODY (LINK, IMG)*>
the BODY element can have any number of child LINK and IMG
elements, but they must come in pairs, with the LINK element
preceding the IMG element

<!ELEMENT body (link*, img*)>
the BODY element can have any number of child LINK elements
followed by any number of child IMG elements

Using Parentheses for Complex Declarations
Element declarations can be more complex than the examples

above. E.g., you can specify that a PERSON element either contains a
single NAME element or a FIRSTNAME and LASTNAME element. To
group elements, put them in parentheses as shown below:

<!ELEMENT PERSON (NAME | (FIRSTNAME, LASTNAME))>

Declaring Attributes
Attributes are declared using the <!ATTLIST > declaration. The syntax is
shown below:

185

<!ATTLIST ElementName
AttributeName AttributeType State DefaultValue?
AttributeName AttributeType State DefaultValue?>

 ElementName is the name of the element taking the attributes.
 AttributeName is the name of the attribute.
 AttributeType is the type of data that the attribute value may hold.

Although there are many types, the most common are CDATA
(unparsed character data) and ID (a unique identifier). A list of
options can also be given for the attribute type.

 DefaultValue is the value of the attribute if it is not included in the
element.

 State can be one of three values: #REQUIRED, #FIXED (set
value), and #IMPLIED (optional).

The ARTIST element has two possible attributes: SITE, which is optional
and may contain any valid XML text, and NATIONAL, which defaults to
yes if it is not included.

<!ATTLIST ARTIST
SITE CDATA #IMPLIED
NATIONAL (yes|no) "yes">

Validating an XML Document with a DTD
The DOCTYPE declaration in an XML document specifies the DTD to
which it should conform. In the code sample below, the DOCTYPE
declaration indicates the file should be validated against artists.dtd in the
same directory. Add below line in Artists.xml after declaration:

<!DOCTYPE ARTISTS SYSTEM "artists.dtd">

Below is the example how to work with internal and external DTD:

Internal DTD
<?XML VERSION="1.0"?>

<!DOCTYPE NOTE [

<!ELEMENT NOTE (TO, FROM, HEADING, BODY)>

<!ELEMENT TO (#PCDATA)>

<!ELEMENT FROM (#PCDATA)>

<!ELEMENT HEADING (#PCDATA)>

<!ELEMENT BODY (#PCDATA)>

]>

<NOTE>

<TO>Amar</TO>

<FROM>Ajit</FROM>

<HEADING>Reminder</HEADING>

<BODY>Don't forget to read this</BODY>

</NOTE>

186

External DTD
This is the same XML document with an external DTD:

<?XML VERSION="1.0"?>

<!DOCTYPE NOTE SYSTEM "note.dtd">

<NOTE>

<TO>Amar</TO>

<FROM>Ajit</FROM>

<HEADING>Reminder</HEADING>

<BODY>Don't forget to read this</BODY>

</NOTE>

This is a copy of the file "note.dtd" containing the Document Type
Definition:

<?XML VERSION="1.0"?>

<!ELEMENT NOTE (TO, FROM, HEADING, BODY)>

<!ELEMENT TO (#PCDATA)>

<!ELEMENT FROM (#PCDATA)>

<!ELEMENT HEADING (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>

9.5. XML SCHEMAS

It is an XML-based language used to create XML-based languages
and data models. It defines element and attribute names for a class of
XML documents. It specifies the structure that those documents must
adhere to and the type of content that each element can hold.

Why need XML Schema / Limitations of DTDs

 DTDs do not have built-in data types.

 DTDs do not support user-derived data types.

 DTDs allow only limited control over cardinality (the number of
occurrences of an element within its parent).

 DTDs do not support Namespaces or any simple way of reusing or
importing other schemas.

187

Schema Elements

Schema authors can define their own types or use the built-in
types. The following is a high-level overview of Schema types. Elements
can be of simple type or complex type.

1) Simple Type

a) These elements can only contain text. They cannot have child
elements or attributes.

b) All the built-in types are simple types (E.g., XS:STRING).

c) Schema authors can derive simple types by restricting another
simple type. E.g., an email type could be derived by limiting a
string to a specific pattern (that includes ‘@’, ‘.’, ‘_’, etc.)

d) Simple types can be atomic (E.g., strings and integers) or non-
atomic (E.g., lists).

2) Complex Type

a) These elements can contain child elements and attributes as well as
text.

b) By default, complex-type elements have child elements.

c) These elements can only contain text. But they are different from
simple type elements in that they have attributes.

d) These elements can be empty, but they have may have attributes.

e) These elements may have mixed content - a combination of text
and child elements.

188

Simple XML Schema – Student.xsd
<?XML VERSION="1.0"
ENCODING="UTF-8"?>
<XS:SCHEMA
XMLNS:XS="http://www.w3.org/2001/
XMLSchema">
<XS:ELEMENT NAME="Student">

<XS:COMPLEXTYPE>
<XS:SEQUENCE>
<XS:ELEMENT

NAME="FirstName" TYPE="xs:string"
/>

<XS:ELEMENT
NAME="LastName" TYPE="xs:string"
/>

</XS:SEQUENCE>
</XS:COMPLEXTYPE>

</XS:ELEMENT>
</XS:SCHEMA>

The code below shows a valid
XML instance of this XML schema
– student1.xml
<?XML VERSION="1.0"?>
<STUDENT
XMLNS:XSI="http://www.w3.org/
2001/XMLSchema-instance"
XSI:NONAMESPACESCHEMAL
OCATION="Student.xsd">
<FIRSTNAME>Sumit</FIRSTNA
ME>
<LASTNAME>Tiwari</LASTNA
ME>
</STUDENT>

Code Explanation:
An XML schema is an XML document
and must be well formed (i.e. follow all
the syntax rules of XML document).
XML schemas also have to follow the
rules defined in the "Schema of
schemas," which defines, among other
things, the structure of an element and
attribute names in an XML schema.
It is a common practice to use the XS
qualifier to identify Schema elements
and types.
The document element of XML schemas
is XS:SCHEMA. It takes the attribute
XMLNS:XS with the value of
http://www.w3.org/2001/XMLSchema,
indicating that the document should
follow the rules of XML Schema.
In this XML schema, we see a
XS:ELEMENT element within the
XS:SCHEMA element. XS:ELEMENT
is used to define an element. In this case
it defines the element STUDENT as a
complex type element, which contains a
sequence of two elements:
FIRSTNAME and LASTNAME, both
of which are of the simple string type.

Code Explanation:
This is a simple XML document.
Its document element is
STUDENT, which contains two
child elements: FIRSTNAME and
LASTNAME, just as the
associated XML schema requires.
The XMLNS:XSI attribute of the
document element indicates that
this XML document is an instance
of an XML schema. The document
is tied to a specific XML schema
with the
XSI:NONAMESPACESCHEMAL
OCATION attribute.

189

9.6. XSL

HTML pages use predefined tags, and the meaning of these tags is well
understood: <P> means a paragraph and <H1> means a header, and the
browser knows how to display these pages.

With XML we can use any tags we want and the meaning of these tags are
not automatically understood by the browser: <TABLE> could mean a
HTML table or maybe a piece of furniture. Because of the nature of XML,
there is no standard way to display an XML document.

In order to display XML documents, it is necessary to have a mechanism
to describe how the document should be displayed. One of these
mechanisms is Cascading Style Sheets (CSS), but XSL (eXtensible
Stylesheet Language) is the preferred style sheet language of XML, and
XSL is far more sophisticated than the CSS used by HTML. XSL consists
of two parts:
 a method for transforming XML documents (XSLT)
 a method for formatting XML documents (XSL-FO)

XSL is a language that can transform XML into HTML, a language that
can filter and sort XML data and a language that can format XML data,
based on the data value, like displaying negative numbers in red.

XSLT
An XSLT looks at an XML document as a collection of nodes of the
following types:
 Root node
 Element nodes
 Attribute nodes
 Text nodes
 Processing instruction nodes
 Comment nodes

An XSLT document contains one or more templates, which are created
with the
<XSL:TEMPLATE /> tag. The XSLT processor reads through the XML
document starting at the root, progressing from top to bottom.

Example – artists.xsl
<?XML VERSION="1.0"?>
<XSL:STYLESHEET VERSION="1.0"
XMLNS:XSL="http://www.w3.org/1999/
XSL/Transform">
<XSL:OUTPUT METHOD="html"/>
<XSL:TEMPLATE
MATCH="child::ARTIST">

Code Explanation
Document begins with an XML
declaration. As with all XML
documents, the XML declaration
is optional.
The second line is the document
element of the XSLT. It states that
this document is a version 1.0

190

<HTML>
<HEAD>
<TITLE>
<XSL:VALUE-OF

SELECT="descendant::FIRSTNAME" />
<XSL:TEXT> </XSL:TEXT>
<XSL:VALUE-OF

SELECT="descendant::LASTNAME" />
</TITLE>
</HEAD>
<BODY>

<TABLE BORDER="1" WIDTH="200">
<TR><TD>

<XSL:VALUE-OF
SELECT="descendant::FIRSTNAME" />

<XSL:TEXT> </XSL:TEXT>
<XSL:VALUE-OF

SELECT="descendant::LASTNAME" />
</TD>
</TR>
</TABLE>
</BODY>
</HTML>
</XSL:TEMPLATE>
</XSL:STYLESHEET>

XSLT document.
<XSL:STYLESHEET
VERSION="1.0"
XMLNS:XSL="http://www.w3.or
g/1999/XSL/Transform">

The third line indicates that the
resulting output will be HTML.
<XSL:OUTPUT METHOD="html"/>

The fourth line is an open
<XSL:TEMPLATE> element.
The MATCH attribute of this tag
takes an XPath, which indicates
that this template applies to the
ARTIST node of the XML
document. Because ARTIST is the
document element of the source
document, this template will only
run once.
There are then a few lines of
HTML tags followed by two
<XSL:VALUE-OF /> elements
separated by one <XSL:TEXT>
element. The <XSL:VALUE-OF
/> tag has a SELECT attribute,
which takes an XPath pointing to
a specific element or group of
elements within the XML
document. In this case, the two
<XSL:VALUE-OF /> tags point
to FIRSTNAME and
LASTNAME elements, indicating
that they should be output in the
title of the HTML page. The
<XSL:TEXT> element is used to
create a space between the
FIRSTNAME and the
LASTNAME elements.
<XSL:VALUE-OF
SELECT="descendant::FIRSTNA
ME" />
<XSL:TEXT> </XSL:TEXT>
<XSL:VALUE-OF
SELECT="descendant::LASTNAM
E" />

There are then some more HTML
tags followed by the same XSLT
tags, re-outputting the
FIRSTNAME and LASTNAME
of the Beatle in the body of the
HTML page.

191

After creating artists.xsl place it in the same directory as of artists.xml.
Also insert the following line in artists.xml after declaration:

<?XML-STYLESHEET HREF="artists.xsl" TYPE="text/xsl"?>

Save artists.xml and open it in browser. You will be able to find the output
in tabular format as shown below:

9.7. SUMMARY

In this chapter we have studied the purpose of XML documents,
how to create a simple xml document, how to include style sheets (XSL)
in xml document to render the data in tabular way. We also studied the
role of DTD in xml documents, when a document can be called well-
formed/valid

Answer to let’s check your progress
1. c 2. c 3. b 4. a 5. a

9.8. EXERCISE

9.8.1. Questions

1. What is XML? How it is different from HTML?

2. Explain benefits of XML.

3. What is format of XML Document?

4. Explain document element, empty elements, and attributes in
XML.

5. Explain CDATA. Also explain how whitespaces are handled in
XML.

6. State and explain syntax for forming a well formed XML
document.

7. How to include special characters like ‘<’, ‘>’, ‘&’, ‘”’, ‘‘’ in
XML document.

8. Explain the difference between well formed and valid XML
document.

192

9. Explain role of modifier in DTDs.

10. Write and explain syntax for declaring attributes in DTDs.

11. What is XML Schema? Why we require it?

12. Explain Schema element structure.

13. What is XSL? Why we need it.

14. Explain the XSL file in detail (to be created in program 3 below).

9.8.2. Programs

1. Create an XML document that will store information about vehicle
i.e. color of vehicle, manufacturing company (this will have
information such as Indian company or foreign company), year of
manufacturing.

2. Create DTD for the XML document created in program 1.

3. Create an XSL file for the xml document created in program 1.



10

PHP

Unit Structure
10.0. Objective

10.1. Why PHP and MYSQL?

10.2. Server-Side Web Scripting

10.3. Installing PHP

10.4. Adding PHP to HTML

10.5. Syntax and Variables

10.6. Passing Information between Pages

10.7. Strings

10.8. Arrays and Array Functions

10.9. Numbers

10.10. Basic PHP Errors Problems

10.11. Exercise

10.0. OBJECTIVE

After going through this chapter you will be able to:
 Identify why to use PHP
 Explain how to install Apache webserver
 Explain how to install PHP
 Explain how to install MySQL
 Explain how to install PHPMyAdmin
 Identify role of php.ini and working of PHP
 Identify different methods of displaying text using PHP
 Identify how to create variable in PHP and what are different data

types of variables

10.1. WHY PHP AND MYSQL?

PHP stands for PHP Preprocessor HyPertext. It is a server-side
scripting language, like ASP. All PHP scripts are executed on the server. It
supports many databases (MySQL, Informix, Oracle, Sybase, Solid,
PostgreSQL, Generic ODBC, etc.). It is open source software that can be
freely downloaded from www.php.net and used.

194

A PHP file has a file extension of ".php", ".php3", or ".phtml” and
contains text, HTML tags and scripts that are returned to the browser as
plain HTML.

PHP runs on different platforms (i.e., Windows, LINUX, UNIX,
etc.) and is compatible with almost all servers used today including
APACHE, IIS, etc. It is easy to learn and runs efficiently on the server
side.

MySQL is a free to download and use database server that is ideal
for both small and large applications. It supports standard SQL and
compiles on a number of platforms.

PHP and MySQL when combined together are cross-platform, i.e.,
you can develop in Windows and serve on a UNIX platform.

10.2. SERVER-SIDE WEB SCRIPTING

10.3. INSTALLING PHP

To run PHP files we require web server as mentioned earlier. It can be
either APACHE or IIS.

Where to download:
 Download PHP: http://www.php.net/downloads.php
 Download MySQL Database: http://www.mysql.com/downloads/
 Download Apache Server: http://httpd.apache.org/download.cgi

In this chapter four installation procedures are shown:
1. For Apache Web Server
2. For PHP
3. For MySQL
4. For PHPMyAdmin

195

To work with PHP we have to install PHP and a Web Server. The
best combination of such type is PHP and APACHE so installation of
APACHE Web Server is shown. If you are using Windows XP then IIS
will be installed on computer. Microsoft’s product IIS is also a Web
Server. So you can configure IIS (shown in PHP Installation) to work with
PHP. As already discussed, combination of PHP and MySQL is the best.
So for database interaction using PHP we have to install MySQL. In
MySQL when you want to create database and tables or insert values, etc.,
you need an interface to do this directly in backend so PHPMyAdmin help
you to do that.

Installation of APACHE
Download the best available version of Apache Web Server for Windows
from this http://httpd.apache.org/download.cgi

Select:
Win32 Binary without crypto (no mod_ssl) (MSI Installer)

Or
Win32 Binary including OpenSSL

Here we are using APACHE HTTP Server (httpd) 2.2.17 Win32 Binary
including OpenSSL

Double click the installer and then click NEXT. Check “I accept the terms
in the license agreement” and click NEXT twice. Now you will see the
below image to fill the server information:

196

After filling the information as given above click NEXT three times. It
will start the installation process after you click INSTALL. Once the
installation is complete you must click FINISH.

After finishing, open your favorite browser and type the following in the
address bar and press the ENTER key:

http://localhost/

If you will see ‘It works!’ , then your apache works fine.

Installation of PHP

It is assumed that you have already successfully setup IIS or installed
APACHE on your machine and configured it. So, to configure PHP and
secure its correct operation you need to go through a few steps:

1. Download and unzip the latest version of PHP

Download the latest zipped distribution of PHP from http://php.net.
Unzip it. The recommendation is to put all the PHP stuff in a folder
just off of the root drive (avoid whitespace), like C:\PHP.

2. Rename/copy php.ini-recommended to php.ini

In your PHP directory, you'll find a couple of php.ini-* files. They
are pre-configured settings for a PHP install that you can use as an
initial setup. The php.ini-recommended is the most secure; hence,
the recommended one; just rename it to php.ini and copy to your
Windows directory.

3. Create a session state directory and point the
session.save_path variable in php.ini to it

This is optional, but recommended step. PHP does not need
sessions, but it's something that will most likely be useful. Create a
session directory somewhere on the server. I created
C:\PHP\sessionFolder. This directory will hold many small files
with session variable information for PHP. Now change the value
of the session.save_path variable in php.ini to be the full path to
that directory (session.save_path=C:\PHP\sessionFolder).

197

4. Setup the PHP extensions
You need to point PHP to the directory that holds the extension
libraries and you need to uncomment the desired extensions.
Point PHP to the correct directory:
Set extension_dir in php.ini to "C:\PHP\ext" (extension_dir =
"C:\PHP\ext").
Uncomment the ones you want to use:
It is important to be sure that php_mysql.dll extension is
uncommented (especially for PHP 5 or newer)

198

5. Make sure that PHP folder is in the system path

You should add "C:\PHP" to the server's PATH environment
variable. To do so follow the steps given below:

 Right-click on My Computer, choose Properties

 Flip to the Advanced tab

 Click the Environment Variables button

 Double-click the Path variable in the list of System variables.

 Either add "C:\PHP;" to the beginning or ";C:\PHP" to the end
(sans quotes, not both).

 Restart IIS for it to take effect.

(To restart IIS you should right-click the local computer in the left
pane of IIS Manager, click on All Tasks -> Restart IIS... -> OK)

Instead, you can copy all non-php dll files from C:\PHP to
C:\Windows\System32 (or somewhere else in the server's PATH),
but the first is the preferred method since it keeps the installation in
one place, making upgrading or uninstalling easier.

199

6. Configure IIS

For configuration, open IIS Manager (Start -> Control Panel ->
Administrative Tools -> Internet Information Services (IIS)
Manager). Then add new extension (.php). Expand the local
computer in the left pane. Right-click on "Web Sites" in the left
pane, then click "Properties" in the menu that pops up. Flip top the
Home Directory tab and click "Configuration". Flip to the
Mappings tab and click Add. Enter the full path to php5isapi.dll in
the "Executable" textbox (Browse... to find it more easily if you
need to). Enter ".php" in the Extension textbox. Select radial
button Limit to, enter "GET, POST, HEAD". Click OK all the way
out.

This will apply to every website. This sets up IIS to actually
respond to requests for PHP files. Until now, IIS did not know
what to do with PHP files, you just told it to pass them through
php5isapi.dll.

7. Configure Apache Web Server

If you want PHP to work with your APACHE Web Server, you
will need to modify your APACHE configuration file to load it.

200

There are two ways to configure APACHE to use PHP. One is to
configure it to load the PHP interpreter as an APACHE module.
The other is to configure it to run the PHP interpreter as a CGI
binary. Unless you have a particular reason for running PHP as a
CGI binary, you will probably want to load PHP as a module in
APACHE, since it runs more efficiently that way.

To configure APACHE to load PHP as a module to parse your
PHP scripts you should make some changes in the APACHE
configuration file, "httpd.conf", typically found in "c:\Program
Files\Apache Group\Apache\conf\". It also can be accessed from
your program files menu.

Search for the section that has a series of commented out
"LoadModule" statements. Add the following line after all the
LoadModule statements:

LoadModule php5_module "c:/php/php5apache2.dll"

Search for "AddType" and add the following line after the last
"AddType" statement:

AddType application/x-httpd-php .php

If you need to support other file types, like ".php3" and ".phtml",
simply add them to the list, like this:

AddType application/x-httpd-php .php3

AddType application/x-httpd-php .phtml

8. Test your setup

Create a new file named “test.php” in one of the websites. Expand
the Web Sites folder in the left pane of IIS Manager to see a list of
existing websites. Right-click on a website and click on Properties
-> Home Directory -> Local Path. It will show you where the
website root directory is.

Create test.php file with the following line:

<?php phpinfo(); ?>

With your browser go to http://localhost/test.php

After loading test.php, you should see some information about
your PHP installation. Be sure to scroll all the way down to the
bottom to see that there were no errors. Pay attention to
"Configuration File (php.ini) Path" field. Field's value is current
location of php.ini file and you should make appropriate changes
in it.

9. Location of libmysql.dll

Lastly, we need to be sure that copy of libmysql.dll is located in
PHP folder (for PHP 5.0 or newer).

201

Installation of MySQL
Download the latest MySql version from this
http://www.mysql.com/downloads/

Click MySQL Community Server and select Windows (x86, 32-bit), MSI
Installer to download. Here we are using MySQL Community Server
5.1.51

Double click the installer and click NEXT twice. Then click on INSTALL
and NEXT twice.

After the above, click NEXT ten times.

202

If this is your first MySql Database setup, you simply enter your root
password. After you enter your root password it will enable the NEXT
button. Click on NEXT then EXECUTE and then FINISH.

To test MySQL, open your MySQL command line client (START->All
Programs-> MySQL-> MySql Server 5.1-> MySql Command Line
Client). Type your password and you will get like this:

Installing phpMyAdmin
phpMyAdmin is a free software tool written in PHP intended to handle the
administration of MySQL over the World Wide Web. phpMyAdmin

203

supports a wide range of operations with MySQL. The most frequently
used operations are supported by the user interface (managing databases,
tables, fields, relations, indexes, users, permissions, etc), while you still
have the ability to directly execute any SQL statement.

Download the latest phpMyadmin Zip version from this:
http://www.phpmyadmin.net/home_page/downloads.php

Here we are using phpMyAdmin 3.3.8. Extract the zip archive to this
location:

C:\Program Files\Apache Software Foundation\Apache2.2\htdocs

And rename the phpMyAdmin-3.3.8-all-languages folder to phpmyadmin.
Here 3.3.8 is version number. Now open your apache httpd.conf file and
find these lines:

<IfModule dir_module>
DirectoryIndex index.html
</IfModule>

Add index.php after the index.html and it looks like this:
<IfModule dir_module>
DirectoryIndex index.html index.php
</IfModule>

Restart your apache server. Open your browser and type the followingin
the address bar and press ENTER:

http://localhost/phpmyadmin/

Type your username and password to login.

204

10.4. HOW PHP WORKS

As shown in the diagram above, the PHP interpreter processes the page,
communicating with file systems, databases, and email servers as
necessary, and then delivers a web page to the web server to return to the
browser.

Role of PHP.ini file
 A plain text file that is used to configure PHP
 When the PHP interpreter is started, it reads the php.ini file to

determine what settings to use

10.5. PHP TAGS

PHP scripts are always enclosed in between two PHP tags. This tells your
server to parse the information between them as PHP. The four different
forms are as follows:

<?php PHP CODE GOES IN
HERE ?>

This is the most commonly used
(and recommended) form. It is
known as the XML style, because
it can be used inside of an XML
document without causing the
document to become poorly
formed.

<script language="php"> PHP
CODE GOES IN HERE </script>

HTML or Script style tags.

<? PHP CODE GOES HERE ?> "Short" tags

<% PHP CODE GOES HERE %> ASP-style

205

Creating and running Your First Script
The first PHP script you will be writing is very basic. All it will do is print
out all information about PHP on your server. Type the following code
into your text editor:

<?
phpinfo();
?>

As you can see this actually just one line of code. It is a standard PHP
function called phpinfo which will tell the server to print out a standard
table of information giving you information on the setup of the server.

One other thing you should notice in this example is that the line ends in a
semicolon. This is very important. In PHP nearly all lines are ended with a
semicolon and if you miss it out you will get an error.

Now you have finished your script save it as phpinfo.php and upload it to
your server in the normal way. Now, using your browser, go the URL of
the script. If it has worked (and if PHP is installed on your server) you
should get a huge page full of the information about PHP on your server.

If your script doesn't work and a blank page displays, you have either
mistyped your code or your server does not support this function (although
I have not yet found a server that does not). If, instead of a page being
displayed, you are prompted to download the file, PHP is not installed on
your server and you should either serach for a new web host or ask your
current host to install PHP.

Displaying Text
To display text using your PHP script is actually very simple. As with
most other things in PHP, you can do it in a variety of different ways. The
main one you will be using, though, is print. Print will allow you to output
text, variables or a combination of the two so that they display on the
screen.

The print statement is used in the following way:
<?
print("Hello world!");
?>

Code Explanation
print is the command and tells the script what to do. This is followed by
the information to be printed, which is contained in the brackets. Because
you are outputting text, the text is also enclosed inside quotation marks.
Finally, as with nearly every line in a PHP script, it must end in a
semicolon. This command is enclosed in your standard PHP tags to
declare it as PHP.
Which will display following on the screen.

Hello world!

206

Instead of using print(), we can also use echo() to display text on the page
as follows:

<?
echo("Hello world!");
?>

Let us check the progress:

1. Which functions will display text on the page?
a. echo b. print c. scanf d. display

2. In how many ways tags can be used in PHP?
a. 2 b. 3 c. 4 d. 5

10.6. VARIABLES

As with other programming languages, PHP allows you to define
variables. In PHP there are several variable types, but the most common is
called a String. It can hold text and numbers. All strings begin with a $
sign. To assign some text to a string you would use the following code:

$text = "welcome to my website.";

This is quite a simple line to understand, everything inside the quotation
marks will be assigned to the string. You must remember a few rules about
strings:

1. Strings are case sensitive so $Text is not the same as $text
2. String names can contain letters, numbers and underscores but

cannot begin with a number or underscore

When assigning numbers to strings you do not need to include the quotes
so:

$emp_id = 456

would be allowed.

Variable Types

Variable Type Explanation

Integer whole number

Double real number

String string of characters

Boolean true or false

Array list of items

Object instance of a class

207

PHP is weakly typed, meaning that variables do not need to be assigned a
type (E.g., Integer) at the time they are declared. Rather, the type of a PHP
variable is determined by the value the variable holds and the way in
which it is used.

E.g., We would first want to make a variable name and then set that equal
to the value we want.

PHP Code:
<?php
$hello = "Hello World!";
$a_number = 4;
$anotherNumber = 8;
?>

Note: PHP does not require variables to be declared before being
initialized.

Variable Naming Conventions

There are a few rules that you need to follow when choosing a name for
your PHP variables.

1. PHP variables must start with a letter or underscore "_".

2. PHP variables may only be comprised of alpha-numeric characters
and underscores. a-z, A-Z, 0-9, or _ .

3. Variables with more than one word should be separated with
underscores. $my_variable

4. Variables with more than one word can also be distinguished with
capitalization. $myVariable

Echoing Variables
Echoing variables is very easy. No quotations are required, even if the
variable does not hold a string. Below is the correct format for echoing a
variable.

PHP Code:
<?php
$my_string = "Hello Boss. My name is: ";
$my_name = “Zubin”;
$my_letter = 4;
echo $my_string;
echo $my_name;
echo $my_letter;
?>

Display:
Hello Boss. My name is: Zubin 4

208

10.7. SUMMARY

In this chapter we have discussed what PHP is, what MySQL is,
and Why to use PHP and MySQL. We have learnt how to install and
configure PHP, MySQL, Apache, and PHPMyAdmin. We discussed to
work PHP requires php.ini and what is its role, various methods are
available to display text on the web page, how to create a variable,
different data types a variable can take.

Answer to let’s check your progress:
1. a, b 2. c

10.8. EXERCISE

10.8.1. Questions
1. What is PHP?
2. What is MySQL?
3. Why to use PHP and MySQL?
4. Explain how to install PHP and make it work with IIS?
5. Explain how PHP works? And what is the role of php.ini?
6. How to display text on the web page using PHP?
7. Write a note on variables in PHP.



SAMPLE QUESTION PAPER 1
Note: 1. All questions are compulsory.

2. Draw neat labeled diagrams and give examples wherever
necessary.

3. Figures to the right indicate full marks.

1. A. Explain <input> tag in detail 10

2. (Attempt any three)

A. Explain drawing diagram email system 5

B. Explain three technologies of e-commerce 5

C. Explain role of IP Address in networking. Also explain
different classes of IP address.

5

D. Write note proxy server 5

3. (Attempt any three)

A. Explain with example any five global attributes 5

B. Explain and tags 5

C. Explain <FRAME> tag 5

D. What are Style sheets? Explain different approaches to
style sheet

5

4. (Attempt any three)

A. Explain special operators of JavaScript – comma,
delete, in, instanceof, new

5

B. Explain different Loops available in JavaScript 5

C. How to create Number object in JavaScript? Explain
any four methods of Number object

5

D. What are regular expressions? Explain giving example 5

5. (Attempt any three)

A. Explain benefits of XML 5

B. Explain syntax rules available in XML 5

C. Explain the “Well-formed vs. Valid XML document” 5

D. State and explain purpose of XML Schema 5

6. (Attempt any three)

A. What is PHP? Why to use PHP and MySql 5

B. How to create associated arrays in PHP? Explain any
four Array Functions

5

C. How error handling is done in PHP? Explain 5

D. Explain ‘.’, ‘?:’, ‘@’ operators of PHP 5

7. (Attempt any three)

A. State and explain steps for querying a database in a PHP
script

5

B. Write a note on Sessions in PHP 5

C. Write a note on type conversion in PHP. Give Example 5

D. Write a PHP script that will create table ‘Person’
(FirstName, LastName, Age) in database ‘mydb’

5



